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Mobile polaron solutions and nonlinear electron transfer in helical protein models

Dirk Hennig
Freie Universität Berlin, Fachbereich Physik, Institut fu¨r Theoretische Physik, Arnimallee 14, 14195 Berlin, Germany

~Received 15 February 2001; revised manuscript received 6 June 2001; published 21 September 2001!

We consider the electron transfer along helical forms of proteins. The spatial structure of the protein helices
is modeled by three-dimensional oscillator networks whose constituents represent peptide groups. Covalent
and hydrogen bonds between the peptide units are modeled by point-point interaction potentials. The electronic
degree of freedom is described by a tight-binding system including besides the nearest-neighbor exchange
interactions between covalently connected units also third- or fourth-nearest neighbor interactions between
hydrogen-bonded sites. In addition each peptide unit possesses an internal vibrational degree of freedom. The
various dynamical degrees of freedom are coupled to each other making the exchange of electronic, intramo-
lecular, and bond-vibrational energy possible. In the first part of the paper we investigate the static polaron
formation resulting from strong interactions between the electron and the intramolecular vibrations. The 3-10
helix and thea helix are investigated. Polaron states are constructed analytically on the basis of a variational
approach. Compared to thea helix the 3-10 helix supports stronger localized polarons. In the second part of
the paper we take the coupling of the polaron with the vibrations of the three-dimensional protein matrix into
account focusing interest on the bond-assisted initiation of polaron motion. In detail it is demonstrated that the
interplay of the protein matrix and the polaron dynamics conspire to activate not only the polaron motion but
also to maintain a long-lived coherently traveling localized pattern along the lattice of peptide units. Starting
from a nonequilibrium state it is shown that coexisting electron and bond-vibration breathers assist the relax-
ation dynamics towards energy equilibration and the attainment of a stationary regime.

DOI: 10.1103/PhysRevE.64.041908 PACS number~s!: 87.15.2v, 63.20.Ry, 63.20.Pw, 63.20.Kr
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I. INTRODUCTION

Excitation energy transfer processes in biological syste
are problems of long-standing interest@1–3#, and especially
the functional primary processes in photosynthetic reac
centers, drug metabolism, cell respiration, enzyme activit
and gene regulation have been studied intensively. In
context understanding the mechanism of electron tran
~ET! in proteins has attracted considerable attention du
the last years@4,5#. The exploitation of the ET processes
construct technological devices has already been prop
@6,7# and for such an achievement a theoretical understa
ing of the transfer mechanism is needed.

Inspired by the success of protein modifications alo
with the determination of their three-dimensional structu
microscopic theories for protein-energy-transfer reacti
were developed. Data of high resolving x-ray analysis
proteins gave the essential details on an atomic scale ne
as input quantities for microscopic theories of ET in protei
This gave insight into the relation between the structure
function for the energy and particle transfer in prote
@8–10# and it was shown how the steric structure of prote
can affect the electron tunneling@11,12#. In particular, as
verified by recent experiments@13#, the H bridges involved
in the protein secondary structure are vital for mediating
in proteins. In fact under physiological conditions the E
may be activated by couplings to vibrational motion@6#. Fur-
thermore, molecular dynamics simulations@14# have pre-
dicted that global protein motions are very important for b
chemical reactions, for instance, in light-induced reactions
chromophores accompanied by nuclear motions and for
ET in pigment protein complexes. In reaction center prote
proceed the protein nuclear motions coherently along the
1063-651X/2001/64~4!/041908~17!/$20.00 64 0419
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action coordinate on the picoseconds time scale of ET
femtosecond spectroscopy revealed@15#. Thus the vibra-
tional dynamics of proteins may serve as the driving force
ET in proteins. In the current work we investigate a nonl
ear electron~actually polaron! transport mechanism relying
on the mutual coupling between the electron amplitude
intramolecular respectively bond vibrations in proteins. Stu
ies of energy storage and transport in biomacromolecules
the basis of self-trapped states have a long history begin
with the work of Landau@16# and Pekar@17#. They intro-
duced the concept of a polaron, i.e., an electron accompa
by its own lattice distortion forming a localized quasipartic
compound. When the size of the polaron is large enough
that the continuum approximation can be applied to the
derlying lattice system Davydov@18,19# and Davydov and
Kislukha @18# has shown that a mobile self-trapped state c
travel as a solitary wave along the molecular structure. Si
the work of Davydov the relevance of solitons for the ener
and particle transport in biomolecules has been recogn
and has remained of great interest~see, e.g.,@20–22#!. Most
of the studies of transport properties in biopolymers
based on one-dimensional nonlinear lattice models, and
cent two- and three-dimensional extensions with respec
solitonic transport of vibrational energy can be found, e.g.
@23–25#. The theory of nonlinear ET mechanism in on
dimensional chain models of proteins is described in@19,22#
and recent considerations demonstrate that supersonic a
tic solitons can capture and transfer self-trapping mode
anharmonic one-dimensional lattices@26#. Regarding the en-
forcing role played by soliton motion in the functional pro
cesses in biomolecules we note that in a recent work it
been proposed that the folding and conformation proces
proteins may be mediated by solitons traveling along
©2001 The American Physical Society08-1
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DIRK HENNIG PHYSICAL REVIEW E 64 041908
polypeptide chains while interacting with a field correspon
ing to the conformation angles of the protein@27#. Further-
more, in a nonlinear dynamics approach to DNA dynamic
has been suggested that solitons propagating along the D
molecule may play an important role in the denaturation a
transcription process@28–30#.

For a theoretical understanding of protein ET mechanis
the corresponding models should not only incorporate
static aspect of the protein structure but also its dynam
~see@31# and references therein!. In particular, it has been
illustrated that the dynamical coupling of a moving electr
to vibrational motions of the peptide matrix can lead to so
biological reactions in an activationless fashion@32#. The
following investigation is devoted to bond-mediated prote
ET using the concept of breather solutions. We consider
transfer of an electron along folded polypeptide chains
ranged in three-dimensional conformations constituting
secondary helix structure of the proteins. We investigate
transfer properties of two common types of helices, nam
the a and 3-10 helix, respectively. The secondary he
structure is modeled by a three-dimensional network the c
stituents of which are the peptide groups. The peptide u
are connected via point-point pair-potentials modeling
covalent and hydrogen-bond interactions, respectively.
electronic system is described by a tight-binding lattice. I
assumed that each peptide unit possesses one interna~in-
tramolecular! vibrational degree of freedom represented
the CvO stretching mode, that is, the amide-I vibration
Strong couplings between the electron amplitude and
tramolecular vibrations lead to polaron formation. Moreov
we demonstrate that the coupling between the polaron
the vibrations of the protein matrix can activate coher
polaron motion.

In the first part of the paper we study the polaron probl
consisting of the electronic degree of freedom stron
coupled to intramolecular vibrations. We construct station
polaron states in two different ways. First results regard
the extension, bistability, energetic content and pattern
polaron states are analytically gained from a variational
proach. Subsequently we numerically derive the ‘‘exact’’ p
laron states with the help of a corresponding map. In part
lar we explore the impact of the longer-range dispers
related to hydrogen-bonded units on the localization featu
We perform a normal mode analysis for the polarons, c
sify their internal localized modes, and discuss modificatio
due to larger dispersive interaction radius. Finally we co
sider the possibility to initiate the mobility of a polaron b
suitable excitation of a pinning mode.

The second part of the paper deals with the coupled p
lem for which the vibrations of the steric protein matrix a
incorporated into the polaron dynamics. We are intereste
the relaxation dynamics when the system starts in a none
librium initial state. Such nonequilibrium states occur in t
presence of a localized electron~exciton! produced sponta
neously or experimentally through initial phototransfer ex
tation. Special attention is paid to a possible activation
polaron motion coupled to the vibrational dynamics of t
peptide units in the three-dimensional secondary struct
We show that the formation of breatherlike bond vibratio
04190
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coexisting with a moving electron breather play a crucial r
for long-lived coherent ET. Finally, in Sec. V we give
summary of our results.

II. THE HELIX PROTEIN MODEL

We discuss the ET along two different types of helices
proteins. A helix is formed when the primary structure of t
one-dimensional sequence of linearly linked amino acid re
dues is tightly curled about its longitudinal axis. The resu
ing secondary structure is stabilized by hydrogen bo
formed between the carbonyl oxygen of residuen and the
amide hydrogen of residuen1m resulting in m spines of
H-bonded residues that span the length of the helix. We c
sider the 3-10 helix arising when a residue forms a hydro
bond with a residue that is three residues away and tha
helix for which residues being four sites apart from ea
other are linked through a hydrogen bond.

Concerning ET the electronic part of the Hamiltonian
given by

He5(
n

(
m

enmucnmu22(
n

(
m

Vm11m@cnm11* cnm

1cnm11cnm* #2(
n

(
m

Wn11n@cn11m* cnm1cn11mcnm* #,

~1!

wherecnm is the probability to find the electron at the si
~peptide unit! (nm). Vm11 m designates the interchain tran
fer matrix element responsible for the ET between covale
bonded peptide units with the periodicity conditioncn,m53
5cn11,m51 for the 3-10 helix andcn,m545cn11,m51 for the
a helix, respectively. The parameterWn11n determines the
value of the intrachain transfer matrix element establish
ET from one peptide unit to the neighboring ones across
hydrogen bonds on a strand of indexm.

The local part of the vibrational Hamiltonian models a
intramolecular~intrapeptide! vibrational degree of freedom
constituted by the amide-I vibration of each peptide unit. T
dynamics of the intramolecular vibrations is described b
set of harmonic oscillators each situated at a site of in
(nm),

Hintra5(
nm

1

2M
Pnm

2 1
MV2

2 (
n

Qnm
2 , ~2!

with Pnm andQnm being the momentum and coordinate, r
spectively, corresponding to the displacement of the osc
tor from its equilibrium position.M is the reduced mass an
V the frequency.

The diagonal coupling between the electronic degree
freedom and the harmonic oscillators is modeled by the
teraction Hamiltonian

He-intra5a(
nm

Qnmucnmu2. ~3!
8-2
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MOBILE POLARON SOLUTIONS AND NONLINEAR . . . PHYSICAL REVIEW E64 041908
Due to the coupling the local electronic on-site energyenm
5e01aQnm gets vibrationally modulated anda is the
electron-vibration coupling parameter. Since the mass o
intramolecular oscillator is significantly larger than that
the electron we treat the system of the intramolecular os
lators classically while we use a quantum description for
transfer of the electron. In this sense the system attribute
the Hamiltonian of Eqs.~1!–~3! represents a multistrand ex
tension of the semiclassical one-dimensional Holstein sys
@33,34#.

The peptide groups are treated as single mass entitie
lowed to move in three dimensions. The bond interactio
between the peptide groups held the helix in its second
structure. Between nearest neighboring units at (nm) and
(nm61) covalent bonds are formed. The peptide grou
situated at (nm) and (n61m) are linked through hydrogen
bonds. The three-dimensional helix backbone~also referred
to as the protein matrix! of two types of helices are sketche
in Fig. 1, namely, the 3-10@Fig. 1~a!# and thea form @Fig.
1~b!#, respectively. They differ in the number of residues p
turn and the height of one turn, i.e., the pitch. Additional
they can have different diameters. There exist left-han
and right-handed helices, respectively. The helix is rig
handed~left-handed! if the motion from one peptide unit to
the neighboring one in positivez direction goes along with a
positive ~negative! angle in thex-y plane.

The geometry of the protein matrix can be described i
cylindrical coordinate system whosez axis coincides with
the helix axis. The rest positions of the peptide groups
determined by

xnm
(0)5r cos@2pL/ l ~3n1m!#, ~4!

ynm
(0)5r sin@2pL/ l ~3n1m!#, ~5!

znm
(0)5~3n1m!l , ~6!

where l is the distance between two neighboring pept
groups located at sites (nm) and (nm61), respectively,
measured along the axis between them,r is the peptide
group-axis distance~radius of the cylinder spanning the h
lix ! andL is the step size of the helix. The winding ratiol /L
is not necessarily an integer and determines the numbe
residues per single loop of the helix.

Since the strong covalent bonds~bond energies on the
order of 50–250 kcal/mol) are rather rigid compared to
comparatively weak and flexible H bonds~bond energies
1 –7 kcal/mol)@2# it is reasonable to model the~weak! co-
valent bond distortions in a harmonic fashion. The vib
tional dynamics of the elastic hydrogen bonds is treated
harmonically @35# and we use Morse potentials. Th
Hamiltonian of the intermolecular interactions is given by

Hinter5
1

2m (
n

(
m

pnm
2 1(

n
(
m

Ucov~r nm!1Uhyd~snm!

5
1

2m (
n

(
m

pnm
2 1

1

2
k(

n
(
m

r nm
2

1D(
n

(
m

~12exp@2asnm#!2, ~7!
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with the momentum vectorpnm5(pnm
(x) ,pnm

(y) ,pnm
(z)) associated

with the displacements (xnm ,ynm ,znm) of the peptide units
from their equilibrium positions (xnm

(0) ,ynm
(0) ,znm

(0)) in x-y-z co-
ordinates. The deviations of the covalent and hydrogen b
lengths from their equilibrium lengthsr nm

(0) andsnm
(0) , respec-

tively are expressed as

r nm5@~xnm2xnm211Dxm
(0)!21~ynm2ynm211Dym

(0)!2

1~znm2znm211Dzm
(0)!2#1/22r nm

(0) , ~8!

FIG. 1. Ball and stick figures of the spatial structure of t
helices. Each thick symbol represents a peptide unit and equal s
bols are attributed to the samem strand. Dashed lines connectin
equal symbols sketch H bonds between the peptide units of a str
Each pair of different symbols linked by the clockwise ascend
spiral curve represents peptide units of different strands conne
via a covalent bond.~a! The 3-10 helix with winding ratiol /L
53.0. ~b! The a helix with winding ratiol /L53.6.
8-3
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DIRK HENNIG PHYSICAL REVIEW E 64 041908
snm5@~xnm2xn21m1Dxn
(0)!21~ynm2yn21m1Dyn

(0)!2

1~znm2zn21m1Dzn
(0)!2#1/22snm

(0) , ~9!

with the abbreviations

Dxm
(0)5xnm

(0)2xnm21
(0) , Dym

(0)5ynm
(0)2ynm21

(0) ,

Dzm
(0)5znm

(0)2znm21
(0) , ~10!

Dxn
(0)5xnm

(0)2xn21m
(0) , Dyn

(0)5ynm
(0)2yn21m

(0) ,

Dzn
(0)5znm

(0)2zn21m
(0) , ~11!

and

r nm
(0)5A~Dxm

(0)!21~Dym
(0)!21~Dzm

(0)!2, ~12!

snm
(0)5A~Dxn

(0)!21~Dyn
(0)!21~Dzn

(0)!2. ~13!

The parameterk regulates the stiffness of the covalent bo
chain,m is the mass of a single peptide unit,D determines
the break up energy of the hydrogen bond, anda is the range
parameter of the Morse potential. The point-point interm
lecular interaction potentials are normalized asUcov(r nm

(0))
5Uhyd(snm

(0))50 and Ucov8 (r nm
(0))5Uhyd8 (snm

(0))50. Although
the distortions of the covalent bonds evolves in a harmo
potential the corresponding dynamical equations are no
theless nonlinear due to Eq.~8!.

The transfer matrix elements are assumed to depend
ponentially on the distance between the peptide units, tha
the length of the covalent respectively the hydrogen bon

Vmm215V exp@2br nm#, ~14!

Wnn215W exp@2gsnm#, ~15!

with b and g being the coupling parameters. It is throug
Eqs.~14! and ~15! that the couplings between the electron
and bond vibrational degrees of freedom~DOF! are intro-
duced. In this manner the transfer matrix elements are mo
lated by the motion of the molecular sites relative to ea
other.

Finally, the coupling between the intramolecular and
termolecular vibrations is incorporated in an interacti
Hamiltonian

Hintra-inter5(
n

(
m

Qnm@xc~r nm111r nm!

1xh~sn11m1snm!#, ~16!

connecting each local intramolecular vibrational coordin
of a molecular site with the involved bond coordinates w
xc and xh being the coupling constants. Altogether o
04190
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model takes into account the exchange between electr
~more generally excitonic!, intramolecular as well as inter
molecular vibrational energy, respectively.

We scale the time according tot̃ 5V t and introduce the
dimensionless quantities:

W̃5
W

V
, D̃5

D

V
, Q̃nm5AMV2

V
Qnm ,

P̃nm5AMV2

V
Pnm ,

x̃nm5AMV2

lV
xnm , ~xnm↔ynm ,znm!,

p̃nm
(x)5A l

MV
pnm

(x) , ~pnm
(x)↔pnm

(y) ,pnm
(z) !,

ã5A Vl

MV2
a, ~a↔b,g!,

x̃c5
Al

V2M
x, ~xc↔xh ,Alk!, ã5

1

AVMV2
a,

~17!

with the mass ratiol5M /m. Dropping the tildes afterwards
the corresponding scaled coupled equations of motion r
as

i t ċnm5a Qnmcnm2W exp~2gsnm!cn21m

2W exp~2gsn11m!cn11m2@exp~2br nm!cnm21

1exp~2br nm11!cnm11#, ~18!

Ṗnm52Qnm2aucnmu22xc~r nm111r nm!

2xh~sn11m1snm!, ~19!

Q̇nm5Pnm , ~20!
8-4
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ṗnm
(x)5gW exp~2gsnm!

~xnm2xn21m1Dxn
(0)!

snm1snm
(0) @cnm* cn21m1cnmcn21m* #

2gW exp~2gsn11m!
~xn11m2xnm1Dxn11

(0) !

sn11m1sn11m
(0) @cn11m* cnm1cn11mcnm* #

1b exp~2g r nm!
~xnm2xnm211Dxm

(0)!

r nm1r nm
(0) @cnm* cnm211cnmcnm21* #

2b exp~2g r nm11!
~xnm112xnm1Dxm11

(0) !

r nm111r nm11
(0) @cnm11* cnm1cnm11cnm* #

2k r nm

~xnm2xnm211Dxm
(0)!

r nm1r nm
(0)

1k r nm11

~xnm112xnm1Dxm11
(0) !

r nm111r nm11
(0)

2xcQnmS ~xnm2xnm211Dxm
(0)!

r nm1r nm
(0)

2
~xnm112xnm1Dxm11

(0) !

r nm111r nm11
(0) D 2xhQnmS ~xnm2xn21m1Dxn

(0)!

snm1snm
(0)

2
~xn11m2xnm1Dxn11

(0) !

sn11m1sn11m
(0) D

22aD@12exp~2asnm!#exp~2asnm!
~xnm2xn21m1Dxn

(0)!

snm1snm
(0)

12aDF12exp~2asn11m!exp~2asn11m!
~xn11m2xnm1Dxn11

(0) !

sn11m1sn11m
(0)

, ~21!
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ẋnm5pnm
(x) , ~22!

and the equations for they,z components are obtained b
substitutingx↔y,z in Eqs.~21! and ~22!, respectively. The
~small! value of the adiabaticity parametert5\ V/V ex-
presses the time scale separation between the fast intr
lecular vibrations and the slow intermolecular ET. No
that through a simple phase transformationc̃n(t)
5cn(t)exp@2i e0t# the e0 dependence has been remov
from the electronic equation of motion.

The parameter values used throughout this study lie in
range of realistic quantities for proteins@1,2,19,22#: V
.2.5 eV, W<1.0 eV, D5(0.04–0.3) eV, m.100
3mproton , V53.1131014s21, a5b5g5(1 –2) Å21, k
5(0.35–1.77) eV/Å2 andxc.xh.4031023 eV/Å2. The
geometry of the 3-10 helix is determined by a pitch 6
distancel 52.0 Å and radiusr 53.0 Å and the parameter
of the a helix are given by pitch 5.4 Å, distancel 51.5 Å
and radiusr 52.8 Å. For the present investigation we fix th
scaled parameters asV51, D50.02, a5b5g50.1, k
50.001,xc5xh50.001,l50.1 andt50.1. The dispersion
parameterW,1 and the electron-vibration coupling streng
a are varied.

III. STATIONARY SOLUTIONS AND POLARONS

Since the couplings of the intermolecular vibrations to
electron motion as well as the intramolecular DOF’s are s
posed to be weak compared to the coupling between
04190
o-

e

,

e
-
e

electron and the intramolecular vibrations we consider a
first step the restricted problem of the ET dynamics indep
dent of the vibrations of the protein matrix. The physic
justification for the separate consideration of the restric
ET dynamics is also given by the time scale hierarchy
cording to which the intramolecular processes evolve m
faster than any intermolecular motion involving changes
the coordinates of the heavy peptide units. In particular wh
the protein gets initially excited due to phototransfer an
cess electron may exchange energy rapidly with the lo
intramolecular vibrations such that a polaron can be form
The subsequent interaction of the polaron with the adjac
bonds is then considered in Sec. IV.

The system of the coupled electron and intramolecu
vibrations is derived from the Hamiltonian of Eqs.~1!–~3!
for b5g5xc5xh50. Particularly the distance-independe
transfer matrix elements become constant, i.e.,Wnn215W
andVmm215V. In the following we construct polaron solu
tions of the coupled electron vibration system whose sca
equations of motion read as

i t ċnm5a Qnmcnm2~cnm211cnm11!2W~cn21m1cn11m!,
~23!

Q̈nm52Qnm2aucnmu2. ~24!

This coupled system can be viewed as a multistrand ex
sion of the standard~one-dimensional! semiclassical Hol-
stein model of mere nearest-neighbor-interaction that is c
ered in the limit case ofW50. To obtain polaron states w
8-5
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DIRK HENNIG PHYSICAL REVIEW E 64 041908
consider the corresponding stationary system. With the c
dition Q̇nm50 one gets the instantaneous displacements

Qnm52aucnmu2. ~25!

Substituting Eq.~25! and inserting the ansatz

cnm5cnm exp~2 iEt ! ~26!

in Eq. ~23!, respectively, results in a nonlinear differen
system

Ecnm52@cnm111cnm21#2W@cn11m1cn21m#

2a2ucnmu2cnm , ~27!

for the time-independent amplitudescnm .
Let us recall that in the one-dimensional Holstein syste

when the shape of the polaron solution depends only on
parametera there exists always a~unique! polaron solution
as the ground state of the system. Moreover, the trans
from large to small polarons proceeds smoothly and
larger the coupling strengtha the more localized and th
higher in amplitude the wave functions become@33,36,37#.

A. Variational approach

In order to gain analytical insight into the nature of t
polaron states under the impact of longer-range couplings
W we use a simple trial function to produce variational
sults. We choose

cnm5A h unu1um2m0u, ~28!

where the variational parameter 0,h,1 gives the width of
the solution. The closerh is to the valueh→1 the more
delocalized becomes the state and in the extreme cash
51 the state is fully extended. Correspondingly, forh→0
the state gets more localized. We present the details of
investigations for the 3-10 helix. The analysis of thea helix
is performed in an analogous way and we conclude Sec. I
with a comparison between the localization properties of
two helix types.

The coefficientA follows from the normalization condi
tion (nmucnmu251 and is evaluated as

A5A 12h2

~11h2!~112h2!
. ~29!

The total variational energyG is computed by substituting
the ansatz~28! into

G52
a2

2 (
nm

ucnmu42(
nm

@cnm* cnm211cnmcnm21* #

2W(
nm

@cnm* cn21m1cnmcn21m* #, ~30!

resulting in
04190
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G~h!524
h

11h2
~11W h2@22h2# !

2
a2

2

~12h2!~11h4!

~11h2!3
. ~31!

In Fig. 2 we show the functionG(h) for selected values ofa
and fixedW50.4. The straight line marks the lowest ener
of the extended states. We recall that forW50 the function
G(h) exhibits only a single minimum corresponding to
stable polaron as the ground state of the lattice system.
the contrary upon increasing the electron-vibration inter
tion a for a givenW.0 there occur transitions from a sing
minimum at largeh via two minima back to a single mini
mum of G(h) at smallh. In the illustrated case ofW50.4
we observe that for values ofa<2.05 there exists a single
minimum ofG lying below the energy of the extended state
Since the location of this minimum is at a large value ofh it
is attributed to a large polaron ground state. For intermed
values 2.05,a<2.20 a second minimum above the e
tended state energy appears for smallh implying the exis-
tence of a metastable small polaron state. The large pola
still represents the ground state. Further increasing ofa leads
to simultaneous lowering of the left minimum and raising
the right one. Eventually fora>2.40 there remains only on
single minimum ofG and the largera is the closer is the
location of this gradually deepened minimum to the va
h50. Consequently, with enlargeda not only the degree of
localization is enhanced but also the amplitude of the sm
polaron becomes higher. On the other hand, this localiza
effect is the more suppressed the larger the value ofW is
taken.

B. Construction of polaron solutions

We construct the polaron solutions numerically followin
the method outlined in Refs.@36,37#. To this end one utilizes
that polarons~localized electronic states in companion wi

FIG. 2. The variational energyG defined in Eq.~31! as a func-
tion of the variational parameterh for W50.4 and selected value
of a as indicated in the plot. Upon increasinga a transition from a
single well via a double well back to a single well potential tak
place.
8-6
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vibrational displacements localized in the same lattice
gion! are obtained as the attractors of the map

$c%→$c̄%5H$c%/iH$c%i , ~32!

with

$c%5S c1m51 ,c2m51 , . . . ,cNm51

c1m52 ,c2m52 , . . . ,cNm52

c1m53 ,c2m53 , . . . ,cNm53

D , ~33!

where the operatorH is determined by the right hand side
Eq. ~27! and the norm of the stateH$c% is defined as
iH$c%i5A(nm(H$c%)2.

As one initial condition for the map iterations we take
completely localized state, i.e.,$cnm

(0)%5dn,n0m,m0
, and act on

it with the operatorH. After each application ofH the result-
ing vector is normalized and the iteration procedure is ter
nated when convergence is attained yielding the pola
state. Inspired by the results gained from the variational
proach we use completely delocalized initial condition
characterized by$cnm

(0)%51/A3N, as well. In dependence o
the initial conditions the map~32! may possess two distinc
attractors and the lattice supports either a small or a la
polaron solution separated from each other by an energ
barrier. The small polaron attractor is approached star
from the localized initial conditions and corresponds to
minimum of G(h→0) while the other attractor attributed t
the large polaron minimum ofG(h→1) is approachable
with delocalized initial conditions.

For an illustration of the influence of the longer-ran
dispersionW on the formation of polarons and their stabili
properties we plot in Fig. 3 the total energy of the polar
defined as

Epolaron52
a2

2 (
nm

ucnmu42(
nm

@cnm* cnm211cnmcnm21* #

2W(
nm

@cnm* cn21m1cnmcn21m* #, ~34!

as a function ofa for different values ofW. ForW50, when
the transition from large to small polarons is smooth,
graph ofE shows a monotone decay with growinga. How-
ever, forW.0 we find that in certaina intervals the initial
conditions corresponding to a completely localized state
to a completely extended state yield different energies.
the sake of proper notations we call in the following t
polarons constructed from completely extended~localized!
initial conditionse polarons~l polarons! and use furthermore
the terma polaron ~3-10 polaron! for the polaron state o
the a helix ~3-10 helix!.

The results for the variational energyG have predicted
that in some ranges ofa a small and a large polaron exist fo
equal parameters. The graphs in Fig. 3 confirm the bistab
feature present whenever the long-range interaction par
eterW is greater than zero. Bistability arising through lon
range interaction was also found in one-dimensional ch
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models. In Ref.@38# the effects of long-range harmonic in
teractions in a one-dimensional chain with short-range an
monicity was considered. It was shown that the existence
two velocity-dependent length scales leads to two types
solitons with different widths~small and large polarons! for
two velocity regions separated by a gap. Furthermore, fo
nonlinear discrete Schro¨dinger equation with long-range dis
persive interaction the existence of bistability in the soluti
behavior was observed in@39#. The two existing stable sta
tionary states represent a continuumlike soliton and an int
sically localized mode. Bistability was further observed
the solutions of a one-dimensional molecular chain with
periodic on-site potential@40#. It was shown that the polaron
state exists only for appropriate system parameters whi
delocalized exciton state can always exist. The latter con
tutes in some parameter regions a stable ground state a
in other cases metastable leaving the polaron as the gro
state. In our study of the multistrand Holstein system we fi
that there exists always at least one polaron and in dep
dence on the coupling strengtha either the small or large
polaron forms the ground state of the system.

Figure 3~b! reveals the details of the enlarged transiti
region of the polaron energy forW50.2. At a critical value

FIG. 3. The total polaron energy as a function of the electr
vibration couplinga. ~a! For different values ofW as indicated in
the figures. The full~dashed! lines belong tol polarons (e polarons!
of the 3-10 helix.~b! Detailed plot of the transition region forW
50.2 showing the vertical ascent of the l-polaron energy follow
by its crossing of thee-polaron level and the return of thee-polaron
energy to thel branch whena is increased.
8-7
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DIRK HENNIG PHYSICAL REVIEW E 64 041908
a151.927 the energy of thel polarons~full line! abruptly
jumps to a value above thee polaron~dashed line! and two
separate energy branches appear fora.a1. We stress that
for the illustrated case ofW50.2 the energy of the sma
polarons remains below the lowest extended state energ
that the small polarons cannot become metastable.~Metasta-
bility occurs only for overcriticalW>0.4.! Enlarging a
causes that the small as well as the large polaron energie
steadily lowered although the decline of the small pola
energy is much stronger. In fact, above a critical valuea2
51.939.a1 the small polaron energy falls off one of th
large polaron reversing the energetic relations, i.e., now
small polaron forms the ground state. Furthermore, a
larger critical valuea351.960.a2 the large polaron energ
makes a sudden rejoining drop to the level of the small
laron to continue with the same course fora.a3. In general,
enhanced dispersionW hinders the formation of small po
larons. Particularly, the greater theW the more the onset o
the bistability transition is shifted towards largera values.
Moreover, in the domain of bistability the energetic barr
between the lower-energy small~medium! polarons and the
large ones is raised with growingW.

We remark that we found good agreement between
results obtained from the analytical variational approach
the numerical map method with respect to the polaron ene
and the pattern of the wave function.~In the large polaron
range sometimes a hyperbolic secant shape for the trial f
tions yields even more accurate results than the expone
ansatz.!

The parameter dependence of the bistability property
the multistrand polaron model is properly illustrated in t
W-a plane presented in Fig. 4 where the dark area repres
the region of such parameter constellations for which
small l-polaron energy lies above the ones of the large~me-
dium! e polarons while the latter constitute the ground sta
Conversely, the gray shaded area marks the parameter r
for which the large e-polaron energy exceeds the smal
polaron energy level leaving the smalll-polarons in the

FIG. 4. Illustration of the bistability of the polaron solutions
theW-a-parameter plane for the 3-10 helix. The dark~gray shaded!
area designates parameters for which thel polaron energy is greate
~smaller! than thee polaron energy. Accordingly, in the dark~gray
shaded! region the ground state is formed by thee polaron (l po-
laron!.
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ground state. Note that with increased dispersionW both
regions expand. Particularly, the large~medium! polaron
ground states sustain stronger electron-vibration coupli
and their existence and stability range is extended towa
highera values. This parameter dependence is of importa
for the polaron dynamics~considered below in Sec. III D!
because large~medium! polarons are supposed to be mobi
Below the dark area the polarons are of large and med
extension whereas above the gray shaded area we enco
exclusively small polarons.

Typical wave functions assigned to the different stabil
regions are depicted in Fig. 5. A large polaron is seen in F
5~a! belonging to the ground state fora51.0. Figures 5~b!
and 5~c! illustrate fora51.93 the bistability issue connecte
with the possibility of the excitation of the higher-energ
small polaron state (l polaron! and the medium polaron
ground state (e polaron! for the same parameters. At last
Fig. 5~d! the small polaron ground state is shown fora
52.0 exhibiting not only pronounced localization with re
spect to then direction but also strong exponential conce
tration of the pulse on a singlem strand.

In Fig. 6 we demonstrate the impact of longer-range d
persion on the degree of localization by plotting the energ
partition number defined as

Ēpolaron5

S (
nm

EpolaronD 2

(
nm

Epolaron
2

, ~35!

where the polaronic energy is defined by Eq.~34!. The po-
laronic energy is completely confined at a single site
Ēpolaron51 and is uniformly extended over the lattice
Ēpolaron is of the order 3N. Thus Ēpolaron measures how
many sites are excited to contribute to the lattice ener
Apparently the larger the electron-vibration couplinga the
more dominates the on-site potential terma2/2(nmucnmu4 the
total polaron energy diminishing the role played by the no
local dispersive part. In reverse, when the overall dispers
is enlarged with growingW the influence of the nonloca
dispersive term is amplified hindering small polaron form
tion. Hence, the situation of equipartition is favored. Below
critical valuea8 the e polarons andl polarons coincide so
that they possess identical partition numbers. However
the overcriticala8 the equipartition number ofl polarons
jumps discontinuously uplinked with an abrupt large-sm
polaron transition giving birth to a smalll-polaron branch of
the partition number~full lines!. ~To guide the eyes a vertica
line going from the transition point on the lower branch
the upper one is drawn.! The lower branch of the largee
polaron ~lower dashed lines! is prolongated till the critical
value a9 at which the sudden onset of the large-sm
e-polaron transition appears. Fora.a9 the smalle polarons
and l polarons are again identical possessing equal parti
numbers. To relate the current results with preceding o
we quote that the values of the transition pointsa8 anda9
8-8
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FIG. 5. Polaron wave functions forW50.2 and different values ofa for the 3-10 helix.~a! Large polaron fora51.0.~b! Bistability: The
e polaron fora51.93. ~c! Bistability: The l polaron. Parametera as in ~b!. ~d! Small polaron fora52.
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are given for W50.2 by a85a151.939 and a95a3
51.960 in agreement with the polaron energy transitions
played in Fig. 3~b!.

We conclude this section with a comparison of the loc
ization properties of the 3-10 polarons anda polarons. In
Fig. 7 we plot the wave function of a standard, 3-10 anda
polaron, respectively for equal coupling parametera. We
use one-dimensional representations for which the h
backbones are viewed as if as extended as possible.
spatial indexm51, . . . ,3N (m51, . . . ,4N) is uniquely re-

FIG. 6. The energetic partition number defined in Eq.~35! as a
function of a. The curve parameterW is indicated in the plot. For
W.0 the full ~dashed! line corresponds to the partition numbers
the l polarons (e polarons! of the 3-10 helix.
04190
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lated to the 3-10 helix (a helix) index pair (nm) through
m53n2(32m) @m54n2(42m)#, m51, . . . ,3 (m
51, . . . ,4) andn51, . . . ,N. We recognize that of all three
polarons the standard polaron (W50) is the most narrow
one and generally for a chosen value ofW.0 the 3-10 po-
laron is of smaller extension than thea polaron. Further, the
larger W is taken the smaller gets the height of the cent
polaron amplitude. Moreover, we state that the large-sm
polaron transition is performed at a larger coupling stren
a for the 3-10 polaron than for thea polaron.

FIG. 7. Wave function for the standard~full line!, the 3-10
~dotted-dashed line! anda polaron~dashed line!, respectively, with
parametersa51.5 andW50.2 except forW50 for the standard
polaron.
8-9
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DIRK HENNIG PHYSICAL REVIEW E 64 041908
C. Polaron normal modes

In this section we investigate the linear stability of t
polarons focusing interest on the existence of localized in
nal modes. The latter play a fundamental role for the form
tion, stability, and mobility of breathers@41–47#. We impose
small perturbations

Qnm~ t !5Qnm
(0)~ t !1dQnm~ t !, ~36!

cnm~ t !5$cnm1dcnm~ t !%expF2 i
Ee

t
t G , ~37!

where dQnm and dcnm are small quantities andEe is the
electronic energy of the stationary state. Substituting E
~36! and ~37! into the system~23!,~24! and linearizing
around (Qnm5Qnm

(0) and cnm5cnm) gives the linear system
of tangent equations

i td ċnm5a~Qnm
(0)dcnm1dQnmcnm!2~dcnm111dcnm21!

2W~dcn11m1dcn21m!, ~38!

dQ̈nm52dQnm2a~cnmdcnm* 1cnm* dcnm!. ~39!

Introducing the perturbation vector D

5(dcnm ,dcnm* ,dQnm ,dQ̇nm) we express the system
~38!,~39! in matrix notation

Ḋ5M D, ~40!

where the periodic entries of the Jacobian matrixM

5M „cnm ,cnm* ,Qnm
(0)(t),Q̇nm

(0)(t)… follow from the evolution
of system~23!,~24!. For an analysis of the system~40! we
proceed in a standard way using Floquet theory. To this
we integrate the equations of motion over one periodT
52pt/Ee to get the Floquet map

D~T!5F D~0!, ~41!

giving the evolution of an initial deviation of the period
solution after one periodT with the Floquet matrixF. Linear
stability requests that all the eigenvaluesRn exp(i Qn) of F
lie on the unit circle. Additionally the Floquet analysis pr
vides us with the frequencies of the normal modes via
relationvQ5veQ/(2p) with Q expressed inrad.

Intensive numerical investigations in a wide parame
range have proved that all the polarons gained from the m
~32! are linearly stable. We underline that also in the regi
of bistability the l polarons as well as thee polarons are
stable. Thea and 3-10 polarons exhibit similar spectral fe
tures. Therefore we restrict the representation to the 3
polaron. A typical spectrum of the Floquet eigenvalues
shown in Fig. 8 fora51.9 andW50.2. For later quotation
the inset displays the velocity component of the pinn
mode in a one-dimensional representation.

In Fig. 9 we present the frequencies of the lowest brea
ing and pinning modes as a function of the electron-vibrat
couplinga for different values of the transfer matrix eleme
W. In Figs. 9~a! and 9~b! the casesW50 andW50.2 for a
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lattice with periodic boundary conditions when the only a
tractor of the map~32! originates from localized initial con-
ditions, are shown. The dashed~full ! line represents the pin
ning ~breathing! mode. The pinning mode is the lowe
frequency mode for undercritical values ofa. For the stan-
dard case (W50) the large-small polaron transition is re
flected in a crossing of the two branches so that the breat
mode becomes the lower one@36,37#. For the extended po
laron system withW.0 the beginning of the existence rang
of the localized internal modes is shifted to highera values.
Below a criticalac the behavior of the standard case is r
sembled. At the criticalac the low-frequency antisymmetric
pinning mode converts to symmetric parity and the low
mode goes steadily over into a breathing mode. At the sa
time, the original breathing mode branch ceases to ex
Concerning the pinning mode, atac there appears a fre
quency gap between its original branch and the high
frequency continuation above the new breathing mode. T
discontinuous exchange between the pinning and mov
mode positions has to be distinguished from the steady m
crossing taking place in the standard case.

In Figs. 9~c!–9~e! results for the polaron lattice with ope
boundary conditions, for which the completely localized a
extended initial conditions may lead to polaron solutions,
illustrated. In the standard case@Fig. 9~c!# the large-small
polaron transition is connected with the usual mode cross
for which the breathing mode becomes the lower one
largea. However, withW.0 there appears richer structu
in the spectra. One observes that from the lower freque
pinning mode at a valuea1 a breathing mode branch bifur
cates off.~In the remainder of this section we refer to th
breathing and pinning modes fora,a1 as the original
modes.! The newly developed breathing mode continu
above the original pinning mode and crosses ata2 the origi-
nal higher-frequency breathing mode. The latter drops do

FIG. 8. Distribution of the Floquet eigenvalues on the unit circ
for the 3-10 helix. Parameters:a51.9 andW50.2. The inset dis-
plays the antisymmetric pattern of the velocity component of
pinning mode.
8-10
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FIG. 9. Frequencies of the breathing and pinning modes as a function ofa and given values ofW. A breathing~pinning! mode is
represented by the solid~dashed! line, respectively.~a! The standard caseW50 for periodic boundary conditions.~b! As in ~a! except for
the longer-range dispersionW50.2. ~c! As in ~a! but for open boundary conditions.~d! As in ~c! except forW50.2. ~e! Details of the
transition region of~d!. Assignments of the branches of different line types to thel polaron~l! ande polaron~e! as indicated in the plot.
th

oc
es
ree

c
in
in frequency asa grows and terminates simultaneously wi
the lower pinning mode at a valuea3.

For a more detailed explanation of the transitions ass
ated with the different behavior of thee polarons andl po-
larons we show details of the transition region in Fig. 9~d!.
04190
i-

We use the prefixese andl not only to label the two polaron
types but also to distinguish the localized internal mod
attributed to them. Furthermore we emphasize that the th
transition pointsa1,2,3 determining the bistability, energeti
and localization features of the polarons as illustrated
8-11
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DIRK HENNIG PHYSICAL REVIEW E 64 041908
Figs. 3 and 6, respectively, are directly related to the spec
properties of the corresponding localized internal modes

The original pinning mode branch~the lowest dashed line
section! belongs fora1,1.927 to an internal localized mod
of the coinciding large sizee polarons andl polarons. At
a151.927 a breathing mode bifurcates off the original
branch and continues as the full line above the contin
e-pinning mode while thel-pinning mode jumps abruptly up
in frequency~upper dashed line!. Hence, the lowest mode o
the l polaron is now supported by a breathing mode~lowest
full line section!. This mode exchange is related to the su
den transition from a large to a smalll polaron. The latter
possesses higher energy content than itse-polaron counter-
part and thus the region of bistability for which thee polaron
forms the ground state is entered ata151.927 ~compare
Figs. 3~b! and 4, respectively!. However, the continued
e-pinning mode branch~the lowest dashed line! is still lower
in frequency than itse breathing counterpart and therefo
the e polaron retains its large size. Thise-pinning mode
crosses the e-breathing mode branch~full line! at a8
51.951 from below and terminates ata351.960 when it
performs a jump up in frequency to merge with thel-pinning
mode branch~upper dashed line!. Physically, in the interval
a8,a,a3 the lower mode of thee polaron is now of
breathing type rendering the size of thee polaron from large
to medium or even small. Similar bifurcation behavior
found concerning the original breathing mode, that is, be
a151.927 thel branch and thee branch coincide~full line!.
At a1 the l branch terminates and is fora.a1 continued as
the breathingl mode that has bifurcated off the origin
l-pinning mode branch as described above. Thus, equiva
to the discontinuous continuation of thel-pinning mode with
its jump up in frequency thel-breathing mode performs
sudden jump down in frequency. The steady prolongation
the original breathinge mode goes further down in frequenc
asa grows and crosses the off-bifurcated breathingl mode at
a251.939. Note that beyond this point the energy of thl
polaron drops below thee-polaron energy level. Hence, th
former constitutes the ground state@see Fig. 3~b!#. After the
original branch of thel-breathing mode has intersected t
branch of the originall-pinning mode it stops ata3. For a
.a3 thee polaron andl polaron coincide and share commo
branches of breathing and pinning modes, respectively.
posite to the behavior in the intervala,a1 the breathing
mode is now the lower frequency mode so that the polar
are of small extension.

D. Moving polarons

In this section we study the mobility of polarons facilita
ing a numerical method originally developed for breath
solutions @41#. ~Actually, the electronic amplitude patter
ucnmu2 can be regarded as a static electron breather solu
Ref. @42#.! According to @41# we initiate the motion of po-
larons through suitable perturbations of the velocity variab

$Q̇nm(t)% targeted in the direction of the pinning mode. T
be precise, we use for the numerical integration of the sys
~23!,~24! the following initial conditions:
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$cnm,0,Qnm
(0),0%1k$0,0,0,j%, ~42!

with the normalized velocity partj of the pinning mode and
k is the perturbation strength. Due to the lattice discreten
the polarons are pinned and have to overcome a cer
Peierls-Nabarro-energy barrier in order to become mo
along the discrete lattice@43#. Mobility is achieved for over-
critical perturbation strengthsk as long as the~stationary!
polaron extension is not too small@36,44,37#.

We exploited the lowest frequency pinning mode
though others of higher frequency can be applied too. T
time-evolution of a mobile polaron for the standard caseW
50 anda51.5 kicked initially with the velocity componen
of its pinning mode is displayed in Fig. 10~a!. Taking into
account a longer-range dispersionW.0 and keepinga fixed
leads to a broadening of the~stationary! polaron profile. That
greater polaron extension does not necessarily imply hig
pulse velocity can be seen in Fig. 10~b!. In comparison with
the preceding standard case@Fig. 10~a!# the present polaron
moves with smaller but uniform velocity along the lattic
and its localized shape remains invariant. We have also
ied the value ofa such that the polarons for the casesW
50 andW50.1 have equal stationary profile, respective
For example the constellationW50 anda51.15 exhibits a
stationary profile equal to the corresponding one forW
50.1 anda51.5. Interestingly, the comparison of the Fig
10~c! and 9~c! reveals that the incorporation of longer-ran
dispersion improves the polaron mobility. Unlike the imm
bile polaron for W50 the corresponding one forW50.1
moves along the lattice. We remark that qualitatively eq
results are obtained for the mobility of thea polarons.

IV. THE COUPLED POLARON BOND-VIBRATIONS
SYSTEM

In this section we study the ET problem when the polar
system is coupled to the vibrations of the protein mat
oscillators. Due to their mutual couplings energy exchan
between electronic, intramolecular, and intermolecular
grees of freedom may take place. According to the preced
findings ~see Sec. III C! the polaron as the stationary an
linearly stable solution of the system~23!,~24! is the ground
state of the polaron system. On the other hand, an initi
highly nonequilibrium situation occurs when a localize
electron ~polaron! is produced by initial excitation of the
protein due to phototransfer. This polaron can distribute p
of its energy into the bonds till energy equilibration is a
tained. With the perspective to ET we pay special attent
to the existence and stability of moving polarons when
motion is induced by local vibrations of the protein matri
To this end we initialized the system~18!–~22! with a bare
small polaron state derived in Sec. III. All oscillators~pep-
tide units! of the protein matrix are initially held in their res
positions. However, the impact of the electronic terms on
bond oscillators in Eq.~21! lead to immediate deformation
of the bonds initiating the energy exchange dynamics.

At least two interesting questions arise; namely, will t
coupled system relax to a steady regime, and second, wh
the destiny of the polaron when it gets coupled to the vib
8-12



y-
te
te
ec
a

cu
e

wo

at-
ent
her-

0
zed

is
n-

he
2.

gs
he
rst

13
but
ion
o-
to a
ptly

ity
d

t

Pa

e-
nta-

n
s
posi-

MOBILE POLARON SOLUTIONS AND NONLINEAR . . . PHYSICAL REVIEW E64 041908
tions of the protein matrix? Moreover, will the coupled d
namics still support a standing polaron or does the pro
matrix dynamics even act as the ‘‘driving’’ force to activa
polaron motion? Finally, can we expect a geometrical eff
and does the steric arrangement of the protein matrix h
consequences for the ET?

We integrated the system~18!–~22! numerically using a
fourth-order Runge-Kutta method and monitored the ac
racy of the numerical computations by checking the cons
vation of the total energy and the norm(nmucnmu251,
respectively.

FIG. 10. Time evolution of the 3-10 polarons when the veloc
component gets initially kicked in the direction of the correspon
ing pinning mode. The spatial indexm51, . . . ,3N of the one-
dimensional representation of the amplitude pattern is related to
3-10 helix index throughm53n2(32m) and n51, . . . ,N. ~a!
Moving polaron in the standard caseW50, a51.5, andk50.2.~b!
Moving polaron under the impact of longer-range dispersion.
rameters as in~a! except forW50.1. ~c! Immobile standard po-
laron. Parametersa51.15, W50, andk50.2. We remark that the
stationary polaron shape is equal to those in~b!.
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In order to compare the dynamical properties of the t
helix types we take equal dispersion parameterW50.2 in
both cases and choose the coupling parametera such that the
a polaron and 3–10 polaron exhibit initially comparable p
terns. Interestingly, we observe that after an initial transi
phase the polaron starts to move along the lattice in a co
ent fashion as illustrated in Figs. 11~a! @11~b!# for the elec-
tron breatherof the 3-10 helix (a helix!. Regarding the mo-
bility the a polaron exhibits similar behavior to the 3-1
polaron. Both polaron types retain in essence their locali
shape throughout the journey in the peptide lattice, which
further proved by the time evolution of the second mome
tum of the electronic amplitude distribution measuring t
spatial extension of the electron profile shown in Fig. 1
However, thea polaron exhibits larger temporary spreadin
of its width than the 3-10 polaron clearly reflected in t
amplitudes of the second momenta. The evolution of the fi
momentum of the amplitude distribution portrayed in Fig.
affirms that the polarons move almost coherently in time
thea polaron moves faster than the 3-10 polaron but mot
of the a polaron sets in earlier. Furthermore, the first m
mentum remains zero in the initial phase corresponding
resting polaron and the motion sets in more or less abru

-

he

-

FIG. 11. The coupled polaron bond-vibrations dynamics: Tim
evolution of the electron breather in a one-dimensional represe
tion. Parameters as given in the text andN563 (N547) for the
3-10 helix (a helix!. Note that for a better illustration only a sectio
of the lattice is displayed.~a! The 3-10 polaron. The spatial indice
of the depicted one-dimensional representation and the actual
tion on the strands are related viam53n2(32m) with m
51, . . . ,3N, n51, . . . ,N, and m51, . . . ,3. ~b! The a polaron
with index relation m54n2(42m) with m51, . . . ,4N, n
51, . . . ,N, andm51, . . . ,4.
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at an instant of time pointing to a kicklike initiation of th
motion.

Let us remind that the kinetic energy of the bare pola
is zero. This situation changes when the coupling to the p
tein matrix is taken into account. The coupled system is
longer in an equilibrium state and the relaxation dynam
induces energy transmission. During the initial phase w
the polaron still rests~zero and/or not enough kinetic energ
to overcome the mobility threshold! a steady directed flow o
small amounts of polaron potential energy into the bo
DOF’s takes place mainly at the site of the polaron cen
This temporary potential energy loss of the polaron, at m
amounting to 5% of the total polaron energy, broadens
fectively the polaron profile. At the same time when t
bonds receive energy at the expense of the polaron en
they get distorted from their initial rest positions. More pr
cisely, when amounts of the initial polaron energy are c
veyed into the bond degrees of freedom a standingbond-
breatherat the central position of the bare polaron is creat
The nonlinear terms contained in the equations of motion
the bond oscillators are responsible that on receipt the
jority of the energy does not disperse away from the abso
ing site. In reverse, due to the coupling between the in

FIG. 12. Time-evolution of the second momentum of the el
tronic amplitude distributionucnmu2 for the 3-10 helix~solid line!
and thea helix ~dashed line!.

FIG. 13. Time-evolution of the first momentum of the electron
amplitude distributionucnmu2 for the 3-10 helix~solid line! and the
a helix ~dashed line!.
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molecular and intramolecular oscillators@cf. the term
2xc(r nm111r nm)2xh(sn11m1snm) in Eq. ~19!# the defor-
mations of the bonds react on the polaron system so tha
polaron’s momentum is no longer zero. Additionally, due
possibly developed deviations from the stationary pola
profile the term2Qnm2aucnmu2 may no longer vanish as i
used to be for the bare polaron and thus could contribut
further alterations of the polaron momentum.

Remarkably, as Fig. 14 reveals a consistently grow
velocity component of the polaron develops resembling
antisymmetric shape of a pinning mode. Eventually, at a c
tain instant of time the size of the internally created antisy
metric velocity component has become large enough to
tiate motion of the meanwhile further enlarged polaron. W
observe that the ET takes place solely via the stron
coupled short covalent bonded units~covalent path! and the
interchain transfer via the weak and extended H bond
suppressed. We tested also polaronic states on a single s
consisting of hydrogen bonded units as initial condition
However, no coherent polaron motion on a hydrogen p
could be observed.

After the polaron motion has been activated the coup
dynamics continues in a~quasi!stationary regime character
ized by the uniformly traveling polaron and the standi
bond breathers. In general, we find that the pattern of tha
polaron exhibits larger spatiotemporal oscillations than
3-10 polaron pointing to a heavier energy exchange betw
the polaron and the protein matrix vibrations in thea helix.
In Fig. 15 we illustrate the evolution of the excitation pa
terns of the covalent as well as hydrogen bonds. In fact,
protein matrix of the 3-10 helix absorbs less amount of p
laronic energy than its correspondinga helix counterpart.
After the polaron has passed a region the encompassed
drogen bonds get stretched and pinned bond breathers
developed whose positive maximal amplitude is the sma
the further apart the bond breather is from the starting s
The covalent bonds stay permanently stretched once the
laron has encountered them. The percentage of the tota
ergy contained finally in the bond breathers is less than t
For thea helix all covalent bonds and hydrogen-bonds b
come deformed in the course of the relatively fast dispers
of bond excitations into the whole lattice. These bond def

-
FIG. 14. The spatiotemporal pattern of the momentumPnm for

the 3-10 helix in the initial phase during which the antisymmet
shape develops.
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FIG. 15. The spatiotemporal evolution of the covalent respectively hydrogen bonds.~a! The covalent bonds of the 3-10 helix.~b! The
hydrogen bonds of the 3-10 helix.~c! The covalent bonds of thea helix. ~d! The hydrogen bonds of thea helix.
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mations form breather lattices@48,49# built up from a variety
of neighboring pinned narrow breathers. The bond breath
contained in the region not traversed by the polaron s
altogether less than 0.1% of the initial polaron energy wh
the remaining part of the breather lattice along which
polaron travels contains approximately 4% of the total
ergy.

Furthermore we recognize that the amplitudes of the
valent bond breathers are of the same order for both type
helices. However, the H bonds of thea helix @Fig. 15~d!# are
more susceptible to energy absorption than their rather r
3-10-helix counterparts@Fig. 15~b!#. This gives the reason
for the comparatively heavy energy exchange between tha
polaron and its protein matrix reflected also in the tempo
evolution of the polaron energy

Epol52(
nm

$a2/2ucnmu41@cnm* cnm211cnmcnm21* #

1W@cnm* cn21m1cnmcn21m* #%

is shown in Fig. 16. After the initial reduction the 3-10
polaron energy fluctuates around a constant mean v
while thea-polaron energy keeps gradually and slowly d
creasing. Obviously, thea-polaron has to ‘‘sacrifice’’ more
of its energy to the bonds than the 3-10 polaron in orde
04190
rs
re
e
e
-

-
of

id

l

ue
-

o

maintain energy storage and to support coherent ET. E
dently, the 3-10 polaron transports its energy more efficien
than itsa counterparts do.

In summary, out of a nonequilibrium situation the ener
sharing between the polaron and the protein matrix proce
such that the coupled dynamics relaxes onto solutions
coexisting electron and vibron breathers~see@52# and refer-
ences therein!. Hence the breathers play the role of ‘‘attra
tors’’ @50,51# providing a stable equilibrium state. Finally
we remark that there is no difference between left- and rig

FIG. 16. Temporal evolution of the polaron energy for the 3-
polaron~solid line! and thea polaron~dashed line!.
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handed helices with regard to the coupled polaron pro
matrix dynamics.

V. SUMMARY

In this paper we have considered the ET in the contex
helical protein models. The steric arrangement of the pro
secondary structure is modeled by a three-dimensional o
lator network. The hydrogen and covalent bond interacti
between the peptide groups are modeled via pair potent
Each peptide group has an internal vibrational degree of f
dom representing the amide-I mode. The motion of the e
tron over the peptide groups is described by a tight-bind
system. The various dynamical degrees of freedom are
tually coupled making the exchange of electronic, intram
lecular, and intermolecular vibrational energy, respective
possible.

With view to the formation of self-trapped states we ha
studied the polaron problem described by the electronic s
system strongly coupled to the intrapeptide amide-I vib
tions. We have discussed the modification of the pola
states when longer-range dispersions arising via
hydrogen-bonded units are taken into account. First, we h
used a variational method to infer on the wave pattern,
ergy as well as multiplicity of polaron states, respective
Interestingly, the variational approach has resulted in bi
bility in the polaron solutions, that is, for the same set
parameters there are two different polarons excita
namely, a small and a large one. This bistability phenome
is not present in the standard polaron problem ofW50. In
fact, this analytically predicted bistability has been verifi
in the ‘‘exact’’ polaron solutions derived numerically as th
attractors of a map. Generally, we have found that the gre
the value of the longer-range dispersionW the larger be-
comes the size of the stationary polaron. Comparing the
calization features of the two helix types we have obser
that the 3-10 helix provides stronger degree of localizat
than itsa counterpart does.

We have further studied dynamical aspects of polar
such as their linear stability and mobility. To investigate t
stability of the polarons we have linearized the system
equations of motion yielding the tangent equations. The F
quet map has been derived and it has been shown tha
Floquet eigenvalues are located on the unit circle guaran
ing linear stability. In addition the Floquet analysis has p
vided us with the frequencies of the normal modes of
polarons. We have discussed the impact of longer-range
persion (W.0) on the existence and stability of localize
internal polaron modes. In the large polaron regime the lo
est internal localized mode is presented by a pinning m
whereas the breathing mode oscillates with higher freque
As the most striking feature we observed that at an overc
cal valueac the pinning mode branch jumps suddenly up
frequency leaving the breathing mode as the lowest local
internal mode. This discontinuous mode exchange is rela
to the sudden transition from a large to a small polaron
has to be distinguished from the gradual large-small-pola
transition related with the steady mode crossing in the s
dard polaron problem.
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In the regime when the polarons are of large~medium!
extension we have initiated polaron motion by kicking t
velocity component in the direction of the correspondi
pinning mode. Remarkably, the incorporation of longe
range dispersion may improve the polaron mobility and
have found constellations for which the standard polaron
mains immobile whereas for the corresponding polaron
equal size forW.0 motion can be activated.

In the second part of the paper we have considered
steric dynamical problem of the polaron system interplay
with the vibrational degrees of freedom of the protein matr
We have numerically integrated the corresponding coup
equations of motion initializing the polaron subsystem with
stationary small~and initially immobile! polaron state. Start-
ing in a nonequilibrium initial state we have focused atte
tion on the relaxation dynamics in the energy exchange
the initiation of polaron motion. Generally, the polaro
maintains a localized shape and keeps the majority of
energy content. Nevertheless, some amount of the pote
polaron energy is locally transferred into the bond vibratio
During an initial transient phase the energy transfer is s
tially confined to the central position of the polaron becau
the nonlinearity contained in the bond equations preven
dispersion of the conveyed energy. Accordingly, we obse
the creation of a pinned breather on the hydrogen bond
well as on the covalent-bond lattice, respectively. In a fe
back manner the newly generated bond breathers reac
cally on the momentum component of the polaron. T
leads to an increase of localized kinetic polaron energy
in particular a small localized velocity component develo
resembling the shape of an antisymmetric pinning mo
~We underline that initially the kinetic energy content of th
polaron is zero.! Simultaneously, the width of the polaron
enlarged due to further transmission of potential polaron
ergy into the bonds. This combined effect of growing p
laron extension and increased gain of polaron kinetic ene
terminates at a certain instant of time and culminates in
activation of polaron motion. Eventually, the coupled p
laron bond vibrations dynamics has reached a~quasi!station-
ary regime and the polaron propagates coherently along
lattice while the bonds exhibit coexisting pinned and movi
breathers. We have found that the 3-10 polaron mo
slower than itsa counterpart but possesses the better abi
to retain its energy content and localized shape.

We stress the crucial role played by the protein mat
oscillators as the medium ‘‘mediating’’ between the p
laron’s potential and kinetic energy contents so that precis
such amount of the polaron’s potential energy is depos
into kinetic ones which is necessary to activate polaron m
tion. Therefore the incorporation of the spatial second
protein structure into the polaron problem proves to be v
for the electron propagation mechanism illustrating t
strong relation between structure and functional processe
biomolecules.
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