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Mobile polaron solutions and nonlinear electron transfer in helical protein models
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We consider the electron transfer along helical forms of proteins. The spatial structure of the protein helices
is modeled by three-dimensional oscillator networks whose constituents represent peptide groups. Covalent
and hydrogen bonds between the peptide units are modeled by point-point interaction potentials. The electronic
degree of freedom is described by a tight-binding system including besides the nearest-neighbor exchange
interactions between covalently connected units also third- or fourth-nearest neighbor interactions between
hydrogen-bonded sites. In addition each peptide unit possesses an internal vibrational degree of freedom. The
various dynamical degrees of freedom are coupled to each other making the exchange of electronic, intramo-
lecular, and bond-vibrational energy possible. In the first part of the paper we investigate the static polaron
formation resulting from strong interactions between the electron and the intramolecular vibrations. The 3-10
helix and thea helix are investigated. Polaron states are constructed analytically on the basis of a variational
approach. Compared to thehelix the 3-10 helix supports stronger localized polarons. In the second part of
the paper we take the coupling of the polaron with the vibrations of the three-dimensional protein matrix into
account focusing interest on the bond-assisted initiation of polaron motion. In detail it is demonstrated that the
interplay of the protein matrix and the polaron dynamics conspire to activate not only the polaron motion but
also to maintain a long-lived coherently traveling localized pattern along the lattice of peptide units. Starting
from a nonequilibrium state it is shown that coexisting electron and bond-vibration breathers assist the relax-
ation dynamics towards energy equilibration and the attainment of a stationary regime.
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[. INTRODUCTION action coordinate on the picoseconds time scale of ET as
femtosecond spectroscopy revealglb]. Thus the vibra-
Excitation energy transfer processes in biological systemsonal dynamics of proteins may serve as the driving force of
are problems of long-standing inter¢&t-3], and especially ET in proteins. In the current work we investigate a nonlin-
the functional primary processes in photosynthetic reactiorar electron(actually polaroi transport mechanism relying
centers, drug metabolism, cell respiration, enzyme activitiespn the mutual coupling between the electron amplitude and
and gene regulation have been studied intensively. In thigxtramolecular respectively bond vibrations in proteins. Stud-
context understanding the mechanism of electron transfdes of energy storage and transport in biomacromolecules on
(ET) in proteins has attracted considerable attention duringhe basis of self-trapped states have a long history beginning
the last year$4,5]. The exploitation of the ET processes to with the work of Landay16] and Pekaf17]. They intro-
construct technological devices has already been proposetliced the concept of a polaron, i.e., an electron accompanied
[6,7] and for such an achievement a theoretical understandy its own lattice distortion forming a localized quasiparticle
ing of the transfer mechanism is needed. compound. When the size of the polaron is large enough so
Inspired by the success of protein modifications alonghat the continuum approximation can be applied to the un-
with the determination of their three-dimensional structurederlying lattice system Davydoj18,19 and Davydov and
microscopic theories for protein-energy-transfer reaction¥islukha[18] has shown that a mobile self-trapped state can
were developed. Data of high resolving x-ray analysis oftravel as a solitary wave along the molecular structure. Since
proteins gave the essential details on an atomic scale need#ét work of Davydov the relevance of solitons for the energy
as input quantities for microscopic theories of ET in proteinsand particle transport in biomolecules has been recognized
This gave insight into the relation between the structure andnd has remained of great interéste, e.g.[20—22). Most
function for the energy and particle transfer in proteinsof the studies of transport properties in biopolymers are
[8-10] and it was shown how the steric structure of proteinsbased on one-dimensional nonlinear lattice models, and re-
can affect the electron tunnelind1,12. In particular, as cent two- and three-dimensional extensions with respect to
verified by recent experimenfd3], the H bridges involved solitonic transport of vibrational energy can be found, e.g., in
in the protein secondary structure are vital for mediating ET23—25. The theory of nonlinear ET mechanism in one-
in proteins. In fact under physiological conditions the ET dimensional chain models of proteins is describefili®,22]
may be activated by couplings to vibrational mot[@&h Fur-  and recent considerations demonstrate that supersonic acous-
thermore, molecular dynamics simulationB4] have pre- tic solitons can capture and transfer self-trapping modes in
dicted that global protein motions are very important for bio-anharmonic one-dimensional lattide%6]. Regarding the en-
chemical reactions, for instance, in light-induced reactions oforcing role played by soliton motion in the functional pro-
chromophores accompanied by nuclear motions and for theesses in biomolecules we note that in a recent work it has
ET in pigment protein complexes. In reaction center proteindeen proposed that the folding and conformation process of
proceed the protein nuclear motions coherently along the reproteins may be mediated by solitons traveling along the
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polypeptide chains while interacting with a field correspond-coexisting with a moving electron breather play a crucial role
ing to the conformation angles of the prot¢Ri7]. Further- for long-lived coherent ET. Finally, in Sec. V we give a
more, in a nonlinear dynamics approach to DNA dynamics isummary of our results.

has been suggested that solitons propagating along the DNA

molecule may play an important role in the denaturation and Il. THE HELIX PROTEIN MODEL

transcription procesg28-30. ) ) )

For a theoretical understanding of protein ET mechanisms We discuss the ET along two different types of helices of
the corresponding models should not only incorporate th@roteins. A helix is formed when the primary structure of the
static aspect of the protein structure but also its dynamic§n€-dimensional sequence of linearly linked amino acid resi-
(see[31] and references therginin particular, it has been _dues is tightly curled abou_t its Ior}gltudlnal axis. The result-
illustrated that the dynamical coupling of a moving electroniNd Secondary structure is stabilized by hydrogen bonds
to vibrational motions of the peptide matrix can lead to somgormed between the carbonyl oxygen of residuand the
biological reactions in an activationless fashif@g]. The amide hydrogen of residus+m resulting inm spines of
following investigation is devoted to bond-mediated proteinH-Ponded residues that span the length of the helix. We con-
ET using the concept of breather solutions. We consider théider the 3-10 helix arising when a residue forms a hydrogen
transfer of an electron along folded polypeptide chains arPond with a residue that is three residues away andathe
ranged in three-dimensional conformations constituting thd€lix for which residues being four sites apart from each
secondary helix structure of the proteins. We investigate th@ther are linked through a hydrogen bond. o
transfer properties of two common types of helices, namely, Concerning ET the electronic part of the Hamiltonian is
the @ and 3-10 helix, respectively. The secondary helix9iven by
structure is modeled by a three-dimensional network the con-
stituents of which are the peptide groups. The peptide unitg, _ 2 *
are connected via point-point pair-potentials modeling theﬁ_'e_zn“ EM: €nu/Col En: 2,:‘ Vs 1l € 1
covalent and hydrogen-bond interactions, respectively. The
electronic system is described by a tight-binding lattice. It is
assumed that each peptide unit possesses one int@mnal
tramoleculay vibrational degree of freedom represented by
the C=0 stretching mode, that is, the amide-| vibrations. @
Strong couplings between the electron amplitude and in- ) N ] ]
tramolecular vibrations lead to polaron formation. Moreover,Wherecy,, is the probability to find the electron at the site
we demonstrate that the coupling between the polaron andP@ptide unit (nw). V,. ., , designates the interchain trans-
the vibrations of the protein matrix can activate coherenf€l matrix element responsible for the ET between covalent-
polaron motion. bonded peptide units W|th_the periodicity conditiop ,—3

In the first part of the paper we study the polaron problem™ Cn+1,=1 for the 3-10 helix and, ,—4=Cp 1,1 for the
consisting of the electronic degree of freedom strongly® helix, respectively. The paramet@, ., determines the
coupled to intramolecular vibrations. We construct stationary@lue of the intrachain transfer matrix element establishing
polaron states in two different ways. First results regarding=T from one peptide unit to the neighboring ones across the
the extension, bistability, energetic content and pattern ofydrogen bonds on a strand of index
polaron states are analytically gained from a variational ap- The local part of the vibrational Hamiltonian models an
proach. Subsequently we numerically derive the “exact” po_mtramolecular(lntrapepﬂdé ylbrqtlonal degree of freed'om,
laron states with the help of a corresponding map. In particuconstituted by the amide-I vibration of each peptide unit. The
lar we explore the impact of the longer-range dispersiorflynamics of th_e mtr:_amolecular V|b_rat|ons is desgnbed_by a
related to hydrogen-bonded units on the localization feature$et of harmonic oscillators each situated at a site of index
We perform a normal mode analysis for the polarons, clasthu),
sify their internal localized modes, and discuss modifications
due to larger dispersive interaction radius. Finally we con- H _E 1 P2 4 MQ? 2 ) .
sider the possibility to initiate the mobility of a polaron by intra " £ 2M e & Qhy @
suitable excitation of a pinning mode.

The second part of the paper deals with the coupled prob- . : . i
lem for which the vibrations of the steric protein matrix are with Pr,, andQn, being the momentum and coordinate, re

incorporated into the polaron dynamics. We are interested irs]pectively, corresponding to the displacement of the oscilla-
P : p y ' . tor from its equilibrium positionM is the reduced mass and
the relaxation dynamics when the system starts in a nonequyy
TR 7 ; the frequency.
librium initial state. Such nonequilibrium states occur in the . . .
) : The diagonal coupling between the electronic degree of
presence of a localized electrdexciton produced sponta- . . . .
) I . freedom and the harmonic oscillators is modeled by the in-
neously or experimentally through initial phototransfer exci- X L
) ; o . . S eraction Hamiltonian
tation. Special attention is paid to a possible activation oft
polaron motion coupled to the vibrational dynamics of the
peptide units in the three-dimensional secondary structure. He_imra:anE Qn,u|cn,u|2- 3)
o

We show that the formation of breatherlike bond vibrations

+ Chu+ 1C:p,] - ; ; Wi+ 1n[C:+ 1,ucn,u+ Cn+ 1,LC:,;,] )
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Due to the coupling the local electronic on-site eneegy
=€+ aQ,, gets vibrationally modulated and is the .
electron-vibration coupling parameter. Since the mass of ar 5
intramolecular oscillator is significantly larger than that of
the electron we treat the system of the intramolecular oscil-
lators classically while we use a quantum description for the
transfer of the electron. In this sense the system attributed tc
the Hamiltonian of Eqs(1)—(3) represents a multistrand ex- | 21
tension of the semiclassical one-dimensional Holstein systen
[33,34.

The peptide groups are treated as single mass entities a «
lowed to move in three dimensions. The bond interactions
between the peptide groups held the helix in its secondary
structure. Between nearest neighboring units rgt)( and
(nu=*1) covalent bonds are formed. The peptide groups
situated at fu) and (n=1u) are linked through hydrogen
bonds. The three-dimensional helix backbdakso referred
to as the protein matr)xof two types of helices are sketched
in Fig. 1, namely, the 3-10Fig. 1(a@)] and thea form [Fig.

1(b)], respectively. They differ in the number of residues per
turn and the height of one turn, i.e., the pitch. Additionally,
they can have different diameters. There exist left-handec
and right-handed helices, respectively. The helix is right-
handed(left-handedl if the motion from one peptide unit to

the neighboring one in positivedirection goes along with a
positive (negative angle in thex-y plane. 3

The geometry of the protein matrix can be described in a
cylindrical coordinate system whoseaxis coincides with °
the helix axis. The rest positions of the peptide groups ares - |
determined by

xﬁ?}=rco§2wL/l(3n+M)], (4) © ]
y\o=rsin2aL/1(3n+u)], (5)
Z0)=(3n+p)l, (6)

where | is the distance between two neighboring peptide
groups located at sitesnft) and (hu=*1), respectively,
measured along the axis between thamis the peptide
group-axis distancéradius of the cylinder spanning the he-
lix) andL is the step size of the helix. The winding ratid S _
is not necessarily an integer and determines the number of FIG. 1. Ball and stick figures of the spatial structure of the
residues per single loop of the helix. helices. Each thick symbol represents a peptide unit and equal sym-

Since the strong covalent bondsond energies on the bols are attributed to the same strand. Dashed .Iines (.:onnecting
order of 50—250 kcal/mol) are rather rigid compared to the2dua! Symbols sketch H bonds between the peptide units of a strand.
comparatively weak and flexible H bondbond energies Ea_ch pair of different symbqls I|nk_ed by Fhe clockwise ascending
1-7 kcal/mol)[2] it is reasonable to model theveak) co- splral curve represents peptide units Qf dnfferen_t sFrands 'connected
valent bond distortions in a harmonic fashion. The vibra-vIa a covalent bonld(a). Thg 3_.10 he.“X with winding ratid/L
tional dynamics of the elastic hydrogen bonds is treated an?3'0' (b) The a helix with winding ratiol/L =3.6.
harmonically [35] and we use Morse potentials. The

Hamiltonian of the intermolecular interactions is given by

w?th the momentum vectqmnM=(p§f2 p% ,pﬁﬁl) as_sociat_ed
1 e St S i) e s

_ 2 _ im Yt 1 Zng, V- R
Hinter =55 En: 2/:' pn;ﬁ}n: E;:' Ucou(Fnp) + Unyd(Sny) ordinates. The deviations of the covalent and hydrogen bond

lengths from their equilibrium lengths?) ands{"), respec-

nu 1
1 1 tively are expressed as
_ 2 - 2
_Zm; % pnM+2K2 % Mo
rn,u,:[(xn/vL_Xn,ufl+AX,ELO))Z—i_(yn,u_yn,u,*l_'—Ay,E?))z
_ _ 2
+D; % (1—exd —as,,])?, (7) (2o 21+ AZO)?] P2 O ®)
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model takes into account the exchange between electronic

(more generally excitonj¢ intramolecular as well as inter-

+(Znu= 21, T AZD) ]2 S0), ©)

with the abbreviations

molecular vibrational energy, respectively.
We scale the time according to=Q t and introduce the

dimensionless quantities:

np—11 np—1-
AZD=20)-2) ., (10
AxP=x0=xP 1, AyP=yR) -y,
AzP=2{)-2{", (11)
and
ri)=V(AxXD)2+(ay D)2+ (aZD)?, (12)
s = V(AXP) 2+ (AyP) 2+ (AZ0)2. (13

The parametek regulates the stiffness of the covalent bond
chain,m is the mass of a single peptide url, determines
the break up energy of the hydrogen bond, arnslthe range
parameter of the Morse potential. The point-point intermo-
lecular mteractlon potentials are normalized la§0v(r(°))
=Upya(s) =0 and Uy, (1) =U},«(s\2) =0. AIthough
the d|stort|ons of the covalent bonds evolves in a harmonic
potential the corresponding dynamical equations are none-
theless nonlinear due to E(B).

The transfer matrix elements are assumed to depend ex-
ponentially on the distance between the peptide units, that is,
the length of the covalent respectively the hydrogen bonds

Vu-1=Vexd—pr,,l, (14

Win-1=Wexd — '}’Sn,u]’ (15

- MQ
Xnp™= Wxn,u,v (Xn,u,<_’yn,uvzn,u)v
T A /L (x) ™., (y) (z))
p MVpnM: (p
- VA ( 8.7)
a= —a, a<— 0>, s
NV M2 I

NN - 1
b — 1 A’ 1 = 1
Q MX (XC Xh \/—K) a \Wa

(17)

with the mass ratia. = M/m. Dropping the tildes afterwards
with 8 and y being the coupling parameters. It is through the corresponding scaled coupled equations of motion read

Egs.(14) and(15) that the couplings between the electronic as
and bond vibrational degrees of freeddOF) are intro-
duced. In this manner the transfer matrix elements are modu-
lated by the motion of the molecular sites relative to each

other. ITCnp, aan.Cn,u Wexq st,u)cn 1p

Finally, the coupling between the intramolecular and in-
termolecular vibrations is incorporated in an interaction
Hamiltonian

Hintra-inter= ; E Qn;/,[Xc(rnM+l+rn;;,)
w

+Xh(sn+l/1,+sn,u)]v (16)

connecting each local intramolecular vibrational coordinate
of a molecular site with the involved bond coordinates with
Xc and y, being the coupling constants. Altogether our
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(an,_xr'l—l,u+ AXS‘IO))

pL)= YW exp(— ys,,) [Ch.Chm1ut CnuCh1,]

0

Snu T St
0

(Xr'H-l,u_ XI"I;,L+ AXS‘]-&I)

* *
- 'yWeX[i— ’ysn-%-l,u,) (0) [Cn+1,uCnM+Cn+l/.Lcn,u]
Sn+1ut Sni1p

(Xnu = Xnu—1+ AX()

+Bexq—yrnﬂ) [C:;Lcn,u—l"_cn,uc,r:,u—l]

0
Fpt 1)

0
(annLl_ Xn,u,—’_AX,(ull)

_Bexq_‘yrn,u+l) [C:/LJrlCn,u—i_Cnp,-FlC:p,]

0
M1t Mg+

0 0 0

i (ng—ng,l+AXL))+ . (xnﬂ+1—ng+AxﬁLll) (Xnu ng,1+Ax£L))
i Mot 10 Xetenu Mot
nu nu nu+1 nu+1 nu nu

(XnM+1_XnM+AX§,LO-?—1)) ((Xnu_xn—lu+AX$10)) (Xn+1,u_xn;/,+AX$104?1)
- ~Xh<np -

0 0 0
rn,u,+1+r|(]/.¢+1 Sn//.—'_SI(]p,) Sn+l,u,+sl('1+)l/.L

(Xn#_xn—lu"_ AXEWO))

—2aD[1—-exp —as,,)|exp(—as,,)

0
Snut St
(Xn+ 10— Xnu FAXEY
+2aD| 1—exp( —as,:1,)eXH —as,;1,) = ”(0) (21)
n+1;¢+sn+l,u
|
v =p® 29 electron and the intramolecular vibrations we consider as a
XnM pn,u’ ( )

first step the restricted problem of the ET dynamics indepen-
dent of the vibrations of the protein matrix. The physical

substitutingx—y,z in Egs. (21) and (22), respectively. The justification for the separate consideration of the restricted

(smal) value of the adiabaticity parameter=% Q/V ex- ET dynamics is also given by the time scale hierarchy ac-

resses the time scale separation between the fast intra cording to which the intramolecular processes evolve much
P L P . M@ister than any intermolecular motion involving changes of
lecular vibrations and the slow intermolecular ET. Note

) = the coordinates of the heavy peptide units. In particular when

that through a simple phase transformatioo,(t)  the protein gets initially excited due to phototransfer an ex-

=cn(t)exd—i &t] the €, dependence has been removedcess electron may exchange energy rapidly with the local

from the electronic equation of motion. _ ~intramolecular vibrations such that a polaron can be formed.
The parameter values used throughout this study lie in th§he subsequent interaction of the polaron with the adjacent

range of realistic quantities for proteindl,2,19,22: V  ponds is then considered in Sec. IV.

=25 eV, W=<10 eV, D=(0.04-0.3) eV, m=100 The system of the coupled electron and intramolecular

XMproton, Q=3.11X104s7%, a=B=y=(1-2) A™%, «  yibrations is derived from the Hamiltonian of EqQ)—(3)

=(0.35-1.77) eV/& and y.=x,=40x10"% eV/A%. The  for B=y=y.=x,=0. Particularly the distance-independent

geometry of the 3-10 helix is determined by a pitch 6 A, transfer matrix elements become constant, Mé,,_,=W

distancel =2.0 A and radiug =3.0 A and the parameters andv,, ,=V. In the following we construct polaron solu-

of the a helix are given by pitch 5.4 A, distande=1.5 A tions of the coupled electron vibration system whose scaled

and radiug =2.8 A. For the present investigation we fix the equations of motion read as

scaled parameters ag=1, D=0.02, a=B=y=0.1,

=0.001, x.=x1r=0.001,A=0.1 andr=0.1. The dispersion j Tén,ﬁ @ QnCnp— (Cry—1+Cnue1) ~W(Cno1,+Cniy),

parameteiW<1 and the electron-vibration coupling strength (23

a are varied.

and the equations for thg,z components are obtained by

Qn,u:_QnM_a'|Cn,u|2- (24)

This coupled system can be viewed as a multistrand exten-
Since the couplings of the intermolecular vibrations to thesion of the standardone-dimensional semiclassical Hol-
electron motion as well as the intramolecular DOF's are supstein model of mere nearest-neighbor-interaction that is cov-
posed to be weak compared to the coupling between thered in the limit case ofV=0. To obtain polaron states we

Ill. STATIONARY SOLUTIONS AND POLARONS
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consider the corresponding stationary system. With the con. -5 ' 1 '
dition Q,,=0 one gets the instantaneous displacements -17r azi 80 | 1
-tsEN | @=210 | A
Qup=— at|co, 2. (25 o] Syt I
=2.3p J
Substituting Eq(25) and inserting the ansatz T s N
- N ]
Cnp= Y, XA —IEL) (26) T2 |
—29F . R
in Eqg. (23), respectively, results in a nonlinear difference =30 P ]
system I ]
-3.5 1 1 1 1 1 1 1 I i
Evn,=—[¥nus1t ¥np— 1= Wl ¥ni 1+ ¥n-1,] 00 01 02 03 04 05 06 07 08 09 1.0

n

BGALZMR P (27) . .
FIG. 2. The variational energly defined in Eq(31) as a func-
for the time-independent amplitudes, , . tion of the variational parametey for W=0.4 and selected values

Let us recall that in the one-dimensional Holstein system©f @ as indicated in the plot. Upon increasinga transition from a
when the shape of the polaron solution depends only on th@ngle well via a double well back to a single well potential takes
parameterx there exists always anique polaron solution
as the ground state of the system. Moreover, the transition
from large to small polarons proceeds smoothly and the 7

— 2 2
larger the coupling strengtlr the more localized and the F(?])——41+ 5 (1+W 2= 77])
higher in amplitude the wave functions becof38,36,31. K
a2 (A-p)(+7Y 31
A. Variational approach 2 (1+ 772)3

In order to gain analytical insight into the nature of the
polaron states under the impact of longer-range couplings fdin Fig. 2 we show the functiofi( ) for selected values at
W we use a simple trial function to produce variational re-and fixedW=0.4. The straight line marks the lowest energy
sults. We choose of the extended states. We recall that W0 the function
I'(n) exhibits only a single minimum corresponding to a
Pnp=A Wlnlﬂﬂwo" (28) stable polaron as the ground state of the lattice system. On
o _ . the contrary upon increasing the electron-vibration interac-
where the variational parameter;<'1 gives the width of  tjon o for a givenw>0 there occur transitions from a single
the solution. The closer, is to the valuen—1 the more  minimum at largez via two minima back to a single mini-
delocalized becomes the state and in the extreme gase mum of I'(#) at small . In the illustrated case diV=0.4
=1 the state is fully extended. Correspondingly, 0 e observe that for values af<2.05 there exists a single
the state gets more localized. We present the details of thginimum ofI" lying below the energy of the extended states.
investigations for the 3-10 helix. The analysis of théelix  sjnce the location of this minimum is at a large valueyoit
is performed in an analogous way and we conclude Sec. Ill Bs attributed to a large polaron ground state. For intermediate
with a comparison between the localization properties of th§ gjues 2.05 0<2.20 a second minimum above the ex-

two helix types. o _ tended state energy appears for smalimplying the exis-
~ The coeff|c2;|entA follows from the normalization condi-  tence of a metastable small polaron state. The large polaron
tion =, ¢n,/|“=1 and is evaluated as still represents the ground state. Further increasing lefids
to simultaneous lowering of the left minimum and raising of
1— 22 the right one. Eventually fotv=2.40 there remains only one
- (1+ 72 (1+272) (29 single minimum ofl" and the largerx is the closer is the

location of this gradually deepened minimum to the value

The total variational energy' is computed by substituting In:CI)'. Cpnsgque?]tly, wg[hbenlalrgedhnot onI)I/_ thde defgrr?e of I
the ansat228) into ocalization is enhanced but also the amplitude of the sma

polaron becomes higher. On the other hand, this localization

o2 effect is the more suppressed the larger the valu&v/ds
F:_? nE |¢’n;L|4_n2 [ll,:ﬂl/jnp,—l_'—l)[jnﬂl//:ﬂfl] taken.
12 m
WE N . 30 B. Construction of polaron solutions
— _ + _ s . . .
nw (-1t Vo1l We construct the polaron solutions numerically following

the method outlined in Ref§36,37]. To this end one utilizes
resulting in that polaronglocalized electronic states in companion with
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vibrational displacements localized in the same lattice re-
gion) are obtained as the attractors of the map

{pt—{t=H{gH|H{g, (32

with

Uiu=1VYou=1+ + - ¥Np=1
{oy=| Y1p=2.Y2u=2, - - Pnp=2 |, (33

Piu=3Y2u=3, - Pnp=3

where the operatdd is determined by the right hand side of
Eqg. (27) and the norm of the statél{y} is defined as
IH{gH = VS, (H{pD?.

As one initial condition for the map iterations we take a
completely localized state, i.6¢/{)} = S nyu,r @Nd aCt ON .
it with the operatoH. After each application dfl the result-
ing vector is normalized and the iteration procedure is termi-
nated when convergence is attained yielding the polaror
state. Inspired by the results gained from the variational apw
proach we use completely delocalized initial conditions, -2.54
characterized byy\)}=1/\3N, as well. In dependence of
the initial conditions the maf32) may possess two distinct
attractors and the lattice supports either a small or a large _; 55
polaron solution separated from each other by an energeti
barrier. The small polaron attractor is approached starting =~ -2.57 co=———=—— =~~~
from the localized initial conditions and corresponds to the o
minimum of I'(»—0) while the other attractor attributed to
the large polaron minimum of (p—1) is approachable FIG. 3. The total polaron energy as a function of the electron-
with delocalized initial conditions. vibration couplinga. (a) For different values otV as indicated in

For an illustration of the influence of the longer-range the figures. The fulldashedlines belong td polarons ¢ polarons
dispersiorW on the formation of polarons and their stability ©f the 3-10 helix.(b) Detailed plot of the transition region fai
properties we plot in Fig. 3 the total energy of the polaron:0_'2 show!ng the vertical ascent of the I-polaron energy followed
defined as by its crossing of the-polaron level and the return of tleepolaron

energy to thd branch whernx is increased.

-2.50

—2.52

—-2.33

-2.55

2
__ 4_ * * models. In Ref[38] the effects of long-range harmonic in-
Epoleror 2 nz:f [ n% Lmutnp=at o1} teractions in a one-dimensional chaing\]/vith ghort-range anhar-
monicity was considered. It was shown that the existence of
_ * * two velocity-dependent length scales leads to two types of
an,u L1t Vnui-sul 39 solitons with different widthgsmall and large polarongor
two velocity regions separated by a gap. Furthermore, for a
as a function ofx for different values ofN. Forw=0, when  nonlinear discrete Schdinger equation with long-range dis-
the transition from large to small polarons is smooth, thepersive interaction the existence of bistability in the solution
graph ofE shows a monotone decay with growiag How-  behavior was observed {139]. The two existing stable sta-
ever, forwW>0 we find that in certairx intervals the initial  tionary states represent a continuumlike soliton and an intrin-
conditions corresponding to a completely localized state andically localized mode. Bistability was further observed in
to a completely extended state yield different energies. Fothe solutions of a one-dimensional molecular chain with a
the sake of proper notations we call in the following the periodic on-site potentidk0]. It was shown that the polaron
polarons constructed from completely extendémtalized  state exists only for appropriate system parameters while a
initial conditionse polarons(| polarong and use furthermore delocalized exciton state can always exist. The latter consti-
the terma polaron (3-10 polaron) for the polaron state of tutes in some parameter regions a stable ground state and is
the a helix (3-10 helix. in other cases metastable leaving the polaron as the ground
The results for the variational enerdy have predicted state. In our study of the multistrand Holstein system we find
that in some ranges @f a small and a large polaron exist for that there exists always at least one polaron and in depen-
equal parameters. The graphs in Fig. 3 confirm the bistabilitylence on the coupling strength either the small or large
feature present whenever the long-range interaction paranpolaron forms the ground state of the system.
eterW is greater than zero. Bistability arising through long-  Figure 3b) reveals the details of the enlarged transition
range interaction was also found in one-dimensional chaimegion of the polaron energy f&/=0.2. At a critical value

041908-7



DIRK HENNIG PHYSICAL REVIEW E 64 041908

3.0 * ground state. Note that with increased dispersiinboth
regions expand. Particularly, the lardemediunm polaron

2871 ground states sustain stronger electron-vibration couplings
and their existence and stability range is extended towards

2.6 highera values. This parameter dependence is of importance
for the polaron dynamicsconsidered below in Sec. Il D

8 24T because largémedium polarons are supposed to be mobile.

Below the dark area the polarons are of large and medium

22r extension whereas above the gray shaded area we encounter
exclusively small polarons.

20r Typical wave functions assigned to the different stability

' ‘ ) ‘ ‘ ‘ \ regions are depicted in Fig. 5. A large polaron is seen in Fig.

.0 01 02 03 04 05 06 07 08 09 1.0 5(a) belonging to the ground state far=1.0. Figures B)

w and Jc) illustrate fora=1.93 the bistability issue connected
with the possibility of the excitation of the higher-energy
small polaron statel(polaror and the medium polaron
ground state € polaron for the same parameters. At last in
Fig. 5d) the small polaron ground state is shown fer

FIG. 4. lllustration of the bistability of the polaron solutions in
the W-a-parameter plane for the 3-10 helix. The dégkay shaded
area designates parameters for whichlthelaron energy is greater
(smallep than thee polaron energy. Accordingly, in the datgray

shadel region the ground state is formed by tagolaron ( po- =20 exhibiting noi only pronounced Iocalizatiqn with re-

laron). spect to then direction but also strong exponential concen-
tration of the pulse on a single strand.

a1=1.927 the energy of the polarons(full line) abruptly In Fig. 6 we demonstrate the impact of longer-range dis-

jumps to a value above thepolaron(dashed lingand two  persion on the degree of localization by plotting the energetic
separate energy branches appeardora;. We stress that partition number defined as

for the illustrated case oW=0.2 the energy of the small

polarons remains below the lowest extended state energy so

that the small polarons cannot become metastébletasta- SE ?
bility occurs only for overcriticalW=0.4) Enlarging a — o petaren
causes that the small as well as the large polaron energies are Epolaron=————— (35
steadily lowered although the decline of the small polaron ; Egolamn
M

energy is much stronger. In fact, above a critical valye
=1.939> a4 the small polaron energy falls off one of the

large polaron reversing the energetic relations, i.e., now thsvhere the polaronic energy is defined by E84). The po-

small pqlgron forms the ground state. Furthermore, at faronic energy is completely confined at a single site if
larger critical valuenz=1.960> «, the large polaron energy — 1 and is uniformly extended over the lattice if

makes a sudden rejoining drop to the level of the small poEpolaron—
laron to continue with the same course &% as. In general,  Epolaron is Of the order Bl. Thus E;ja;0n Measures how
enhanced dispersiow hinders the formation of small po- many sites are excited to contribute to the lattice energy.
larons. Particularly, the greater theé the more the onset of Apparently the larger the electron-vibration coupliagthe
the bistability transition is shifted towards largervalues. ~more dominates the on-site potential tewi2= , .| 1,,,|* the
Moreover, in the domain of bistability the energetic barriertotal polaron energy diminishing the role played by the non-
between the lower-energy smathedium polarons and the local dispersive part. In reverse, when the overall dispersion
large ones is raised with growingy. is enlarged with growingV the influence of the nonlocal
We remark that we found good agreement between théispersive term is amplified hindering small polaron forma-
results obtained from the analytical variational approach antion. Hence, the situation of equipartition is favored. Below a
the numerical map method with respect to the polaron energgritical value ¢’ the e polarons and polarons coincide so
and the pattern of the wave functiofin the large polaron that they possess identical partition numbers. However, at
range sometimes a hyperbolic secant shape for the trial funéhe overcriticale’ the equipartition number of polarons
tions yields even more accurate results than the exponentigdmps discontinuously uplinked with an abrupt large-small
ansatz. polaron transition giving birth to a smdHpolaron branch of
The parameter dependence of the bistability property othe partition numbefull lines). (To guide the eyes a vertical
the multistrand polaron model is properly illustrated in theline going from the transition point on the lower branch to
W-a plane presented in Fig. 4 where the dark area represent8e upper one is drawnThe lower branch of the large
the region of such parameter constellations for which thepolaron (lower dashed lingsis prolongated till the critical
smalll-polaron energy lies above the ones of the laime-  value «” at which the sudden onset of the large-small
dium) e polarons while the latter constitute the ground statee-polaron transition appears. Far>«" the smalle polarons
Conversely, the gray shaded area marks the parameter ranged| polarons are again identical possessing equal partition
for which the large e-polaron energy exceeds the sinall numbers. To relate the current results with preceding ones
polaron energy level leaving the smaHpolarons in the we quote that the values of the transition poiatsand «”
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(c)
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FIG. 5. Polaron wave functions foW= 0.2 and different values af for the 3-10 helix(a) Large polaron forx=1.0. (b) Bistability: The
e polaron fora=1.93.(c) Bistability: Thel polaron. Parametex as in(b). (d) Small polaron fora=2.

are given for W=0.2 by a'=a;=1.939 anda"=a3 lated to the 3-10 helix 4 helix) index pair (i) through
=1.960 in agreement with the polaron energy transitions dism=3n—(3—u) [m=4n—(4—w)], u=1,....3 (u
played in Fig. 8b). =1,...,4) andn=1, ... N. We recognize that of all three
We conclude this section with a comparison of the local-polarons the standard polaroWWE&0) is the most narrow
ization properties of the 3-10 polarons aadpolarons. In  one and generally for a chosen valueWsf>0 the 3-10 po-
Fig. 7 we plot the wave function of a standard, 3-10 and laron is of smaller extension than thepolaron. Further, the
polaron, respectively for equal coupling parameterWe  larger W is taken the smaller gets the height of the central
use one-dimensional representations for which the helipolaron amplitude. Moreover, we state that the large-small
backbones are viewed as if as extended as possible. Tiwlaron transition is performed at a larger coupling strength

spatial indexm=1,... N (m=1,... ,4N) is uniquely re- « for the 3-10 polaron than for the polaron.
T T T 0.6 T T T T T T
1.0} - |
09t ' . i
W) — & ] | I 0.5

0.8 l' | I .
5 07} W=02—F”’} f } 0.4t
2 ! |
€ o6} W=0.4 ; :»» | : ~
= [ / I ] £ 03F
E 0.5 W=0.8 7 } oo { >
2 04r , | f I ool
g o3l ' ! | '

021 ’ )1 04

RIS ]

0.0t . 0.0 : :

0.0 3.0 0 20 40
x m
FIG. 6. The energetic partition number defined in 2p) as a FIG. 7. Wave function for the standardull line), the 3-10

function of @. The curve parametéd is indicated in the plot. For (dotted-dashed lineand a polaron(dashed ling respectively, with
W=>0 the full (dashedlline corresponds to the partition numbers of parametersx=1.5 andW=0.2 except folW=0 for the standard
thel polarons € polarong of the 3-10 helix. polaron.
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C. Polaron normal modes

In this section we investigate the linear stability of the

polarons focusing interest on the existence of localized inter-
nal modes. The latter play a fundamental role for the forma-

tion, stability, and mobility of breathefg1-47. We impose
small perturbations

Qnu()=QP)(1) + 8Qy,,(1), (36)

Ee
Cn,u(t):{wn,f"5Cnﬂ(t)}exr{_i7t}a (37)

where 6Q,,, and éc,, are small quantities ané, is the

electronic energy of the stationary state. Substituting Eqgs.

(36) and (37) into the system(23),(24) and linearizing
around Q,,=QY) andc,, = ¢,,) gives the linear system
of tangent equations

i 70C,, = a(Q)8Cp,+ 8Qn, ) — (8Cn, 1+ 8Cn,—1)

_W(5Cn+1,u+ 5Cr‘l—1,u)! (38)
5an,: _5Qn;¢_a(¢nu5c:,u,+ ¢:M5Cn#) (39)
Introducing the perturbation vector A

=(5cnﬂ,5c;§#,5QnM,5Qn#) we express the system
(38),(39) in matrix notation

A=MA, (40)

where the periodic entries of the Jacobian mathk

=M (¢, %, . QRN(1), Q1)) follow from the evolution

of system(23),(24). For an analysis of the systed0) we
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FIG. 8. Distribution of the Floquet eigenvalues on the unit circle
for the 3-10 helix. Parameteraz=1.9 andW=0.2. The inset dis-
plays the antisymmetric pattern of the velocity component of the
pinning mode.

lattice with periodic boundary conditions when the only at-
tractor of the mag32) originates from localized initial con-
ditions, are shown. The dashédill) line represents the pin-
ning (breathing mode. The pinning mode is the lowest
frequency mode for undercritical values @f For the stan-
dard case (V=0) the large-small polaron transition is re-
flected in a crossing of the two branches so that the breathing
mode becomes the lower of&6,37. For the extended po-
laron system withV>0 the beginning of the existence range

proceed in a standard way using Floguet theory. To this en@f the localized internal modes is shifted to higlevalues.

we integrate the equations of motion over one period

=2m7/E, to get the Floquet map
A(T)=F A(0), (41)

giving the evolution of an initial deviation of the periodic

solution after one period with the Floquet matri¥. Linear

stability requests that all the eigenvalugsexp( ©,) of F

lie on the unit circle. Additionally the Floquet analysis pro-

Below a critical o, the behavior of the standard case is re-
sembled. At the criticaly. the low-frequency antisymmetric
pinning mode converts to symmetric parity and the lowest
mode goes steadily over into a breathing mode. At the same
time, the original breathing mode branch ceases to exist.
Concerning the pinning mode, at. there appears a fre-
quency gap between its original branch and the higher-
frequency continuation above the new breathing mode. This
discontinuous exchange between the pinning and moving

vides us with the frequencies of the normal modes via thenode positions has to be distinguished from the steady mode

relation wg= w0/(27) with ® expressed imad.

Intensive numerical investigations in a wide parameter

crossing taking place in the standard case.
In Figs. 9¢)—9(e) results for the polaron lattice with open

range have proved that all the polarons gained from the mapoundary conditions, for which the completely localized and
(32) are linearly stable. We underline that also in the regimeextended initial conditions may lead to polaron solutions, are

of bistability thel polarons as well as the polarons are
stable. Thew and 3-10 polarons exhibit similar spectral fea-

illustrated. In the standard ca$Eig. 9c)] the large-small
polaron transition is connected with the usual mode crossing

tures. Therefore we restrict the representation to the 3-1fbr which the breathing mode becomes the lower one for
polaron. A typical spectrum of the Floquet eigenvalues idarge «. However, withW>0 there appears richer structure

shown in Fig. 8 fora=1.9 andW=0.2. For later quotation

in the spectra. One observes that from the lower frequency

the inset displays the velocity component of the pinningpinning mode at a value; a breathing mode branch bifur-

mode in a one-dimensional representation.

cates off.(In the remainder of this section we refer to the

In Fig. 9 we present the frequencies of the lowest breathbreathing and pinning modes far<a, as the original
ing and pinning modes as a function of the electron-vibratiormodes) The newly developed breathing mode continues

coupling« for different values of the transfer matrix element
W. In Figs. 9a) and 9b) the casesV=0 andW=0.2 for a

above the original pinning mode and crosseaathe origi-
nal higher-frequency breathing mode. The latter drops down
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FIG. 9. Frequencies of the breathing and pinning modes as a functienasfd given values ofW. A breathing(pinning mode is
represented by the solidlashedl line, respectively(a) The standard casé/=0 for periodic boundary conditiongb) As in (a) except for
the longer-range dispersidW=0.2. (c) As in (a) but for open boundary condition&d) As in (c) except forW=0.2. (¢) Details of the
transition region ofd). Assignments of the branches of different line types tolthelaron(l) ande polaron(e) as indicated in the plot.

in frequency asx grows and terminates simultaneously with We use the prefixesandl not only to label the two polaron
the lower pinning mode at a value;. types but also to distinguish the localized internal modes
For a more detailed explanation of the transitions associattributed to them. Furthermore we emphasize that the three
ated with the different behavior of thepolarons and po-  transition pointsa; , 3 determining the bistability, energetic
larons we show details of the transition region in Fig)9 and localization features of the polarons as illustrated in
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Figs. 3 and 6, respectively, are directly related to the spectral {wnM,O'ng),o}jL k{0,0,0¢}, (42)
properties of the corresponding localized internal modes. .

The original pinning mode brandkthe lowest dashed line with the normalized velocity pag of the pinning mode and
section belongs fora; <1.927 to an internal localized mode k is the perturbation strength. Due to the lattice discreteness
of the coinciding large size polarons and polarons. At the polarons are pinned and have to overcome a certain
a1=1.927 a breathing mode bifurcates off the origihal Peierls-Nabarro-energy barrier in order to become mobile
branch and continues as the full line above the continuedlong the discrete lattidel3]. Mobility is achieved for over-
e-pinning mode while thé-pinning mode jumps abruptly up critical perturbation strengthk as long as thestationary
in frequency(upper dashed lineHence, the lowest mode of polaron extension is not too sm&86,44,37.
the| polaron is now supported by a breathing mdtevest We exploited the lowest frequency pinning mode al-
full line section. This mode exchange is related to the sud-though others of higher frequency can be applied too. The
den transition from a large to a smalpolaron. The latter time-evolution of a mobile polaron for the standard cege
possesses higher energy content thareielaron counter- =0 anda=1.5 kicked initially with the velocity component
part and thus the region of bistability for which tagolaron ~ ©f it pinning mode is displayed in Fig. (0. Taking into
forms the ground state is entered @=1.927 (compare &ccounta longer-range dispersih>0 and keepinge fixed
Figs. 3b) and 4, respectively However, the continued leads to a broadening Qf thistationary polaron prof_lle. Tha_t
e-pinning mode branckthe lowest dashed linés still lower greater polz_iron extension o!oes_ not necessarlly_lmply _hlgher
in frequency than ite breathing counterpart and therefore PUlSe velocity can be seen in Fig. (bl In comparison with

the e polaron retains its large size. Thispinning mode the preceding standard calgég. 10@)] the present polaron
crosses the e-breathing mode brandhll line) at o’ moves with smaller but uniform velocity along the lattice

=1.951 from below and terminates at=1.960 when it and its localized shape remains invariant. We have also var-

performs a jump up in frequency to merge with thginning ied the value ofa such that the. polarons f_or the cas)és
mode branchupper dashed line Physically, in the interval =0 andW=0.1 have equal stationary profile, respectively.
a'<a<as the lower mode of thee polaron is now of For example the constellatioW=0 anda=1.15 exhibits a

breathing type rendering the size of tagolaron from large  Stationary profile equal to the corresponding one ¥ir

to medium or even small. Similar bifurcation behavior is =0-1 anda=1.5. Interestingly, the comparison of the Figs.
found concerning the original breathing mode, that is, belowtO(C) and 9c) reveals that the incorporation of longer-range
a,=1.927 thel branch and the branch coincidéfull line). d!spersmn improves the polaron mob|l_|ty. Unlike the immo-
At a, thel branch terminates and is for>a; continued as Pile polaron forW=0 the corresponding one foA'=0.1
the breathingl mode that has bifurcated off the original MoVes along the lattice. We remark that qualitatively equal
|I-pinning mode branch as described above. Thus, equivalefgSUlts are obtained for the mobility of thepolarons.

to the discontinuous continuation of th@inning mode with

its jump up in frequency thé-breathing mode performs a IV. THE COUPLED POLARON BOND-VIBRATIONS

sudden jump down in frequency. The steady prolongation of SYSTEM

the original breathing mode goes further down in frequency
asa grows and crosses the off-bifurcated breatHingpde at
a,=1.939. Note that beyond this point the energy of the
polaron drops below the-polaron energy level. Hence, the
former constitutes the ground stdtee Fig. 8b)]. After the
original branch of thd-breathing mode has intersected the
branch of the original-pinning mode it stops at3. For «

> a4 thee polaron and polaron coincide and share common
branches of breathing and pinning modes, respectively. O
posite to the behavior in the interval<a, the breathing
mode is now the lower frequency mode so that the polaron
are of small extension.

In this section we study the ET problem when the polaron
system is coupled to the vibrations of the protein matrix
oscillators. Due to their mutual couplings energy exchange
between electronic, intramolecular, and intermolecular de-
grees of freedom may take place. According to the preceding
findings (see Sec. Il € the polaron as the stationary and
linearly stable solution of the systef@3),(24) is the ground
State of the polaron system. On the other hand, an initially

ighly nonequilibrium situation occurs when a localized
glectron(polaror) is produced by initial excitation of the
protein due to phototransfer. This polaron can distribute parts
of its energy into the bonds till energy equilibration is at-
tained. With the perspective to ET we pay special attention
to the existence and stability of moving polarons when the
motion is induced by local vibrations of the protein matrix.

In this section we study the mobility of polarons facilitat- T¢ this end we initialized the systef8—(22) with a bare
ing a numerical method originally developed for breathersmall polaron state derived in Sec. Ill. All oscillatotpep-
solutions [41]. (Actually, the electronic amplitude pattern tige unitg of the protein matrix are initially held in their rest
|cnul? can be regarded as a static electron breather solutiogositions. However, the impact of the electronic terms on the
Ref. [42].) According to[41] we initiate the motion of po-  hond oscillators in Eq(21) lead to immediate deformations
larons through suitable perturbations of the Velocity Variable%f the bonds |n|t|at|ng the energy exchange dynamics_
{'Q,w(t)} targeted in the direction of the pinning mode. To At least two interesting questions arise; namely, will the
be precise, we use for the numerical integration of the systerooupled system relax to a steady regime, and second, what is
(23),(24) the following initial conditions: the destiny of the polaron when it gets coupled to the vibra-

D. Moving polarons
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FIG. 11. The coupled polaron bond-vibrations dynamics: Time-
evolution of the electron breather in a one-dimensional representa-
tion. Parameters as given in the text aNe-63 (N=47) for the
3-10 helix (a helix). Note that for a better illustration only a section
of the lattice is displayeda) The 3-10 polaron. The spatial indices
of the depicted one-dimensional representation and the actual posi-
tion on the strands are related via=3n—(3—pu) with m
=1,...., n=1,... N, and u=1,...,3. (b) The a polaron
with index relation m=4n—(4—w) with m=1,... N, n

- =1,...N,andu=1,... .4

\cm\2
0.00 0.05 040 045 0.20

In order to compare the dynamical properties of the two
helix types we take equal dispersion paramétér0.2 in

FIG. 10. Time. e.vlolution of th.e 3-10 polar.ons when the velocity hoth cases and choose the coupling parametarch that the
component gets initially kicked in the direction of the correspond- , 44100 and 3—10 polaron exhibit initially comparable pat-
INg pinning mode. The_spatlal mdem_:l, N Of. the one- terns. Interestingly, we observe that after an initial transient
dimensional representation of the amplitude pattern is related to the L
3-10 helix index throughm=3n—(3— &) andn=1,... N. (@ phase the polarpn starts tp move along the lattice in a coher-
Moving polaron in the standard cagé=0, «=1.5, andk=0.2. (b) ent fashion as illustrated in Figs. (]a_tl [124(b)] fo_r the elec-
Moving polaron under the impact of longer-range dispersion. Paifon breatherof the 3-10 helix ¢ helix). Regarding the mo-
rameters as |r(a) except forw=0.1. (C) Immobile standard po- b|||ty the o p0|ar0n eXh|b|tS S|m|lar behaVIOt’ to the 3'10

laron. Parametera=1.15, W=0, andk=0.2. We remark that the Polaron. Both polaron types retain in essence their localized
stationary polaron shape is equal to thosghin shape throughout the journey in the peptide lattice, which is

further proved by the time evolution of the second momen-

tions of the protein matrix? Moreover, will the coupled dy- tum of the electronic amplitude distribution measuring the
namics still support a standing polaron or does the proteispatial extension of the electron profile shown in Fig. 12.
matrix dynamics even act as the “driving” force to activate However, thex polaron exhibits larger temporary spreadings

polaron motion? Finally, can we expect a geometrical effecbf its width than the 3-10 polaron clearly reflected in the
and does the steric arrangement of the protein matrix havamplitudes of the second momenta. The evolution of the first
consequences for the ET? momentum of the amplitude distribution portrayed in Fig. 13
We integrated the systef18)—(22) numerically using a affirms that the polarons move almost coherently in time but
fourth-order Runge-Kutta method and monitored the accuthe a polaron moves faster than the 3-10 polaron but motion
racy of the numerical computations by checking the conseref the « polaron sets in earlier. Furthermore, the first mo-
vation of the total energy and the normnﬂ|cnﬂ|2=l, mentum remains zero in the initial phase corresponding to a
respectively. resting polaron and the motion sets in more or less abruptly
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FIG. 14. The spatiotemporal pattern of the momentyy for
FIG. 12. Time-evolution of the second momentum of the elec-the 3-10 helix in the initial phase during which the antisymmetric
tronic amplitude distributiodcm|2 for the 3-10 helix(solid line) shape develops.
and thea helix (dashed ling
. . o S molecular and intramolecular oscillatorkcf. the term
at an instant of time pointing to a kicklike initiation of the = Xe(Tnp+17 Tnw) = Xn(Sn+1, 1 Sn,) in Eq. (19)] the defor-
motion. mations of the bonds react on the polaron system so that the
Let us remind that the kinetic energy of the bare polaromolaron’s momentum is no longer zero. Additionally, due to
is zero. This situation changes when the coupling to the propossibly developed deviations from the stationary polaron
tein matrix is taken into account. The coupled system is ngrofile the term— Qnu— a|Cn,u|2 may no longer vanish as it
longer in an equilibrium state and the relaxation dynamicsused to be for the bare polaron and thus could contribute to
induces energy transmission. During the initial phase whefurther alterations of the polaron momentum.
the polaron still restgzero and/or not enough kinetic energy ~ Remarkably, as Fig. 14 reveals a consistently growing
to overcome the mobility threshold steady directed flow of velocity component of the polaron develops resembling the
small amounts of polaron potential energy into the bondantisymmetric shape of a pinning mode. Eventually, at a cer-
DOF's takes place mainly at the site of the polaron centertain instant of time the size of the internally created antisym-
This temporary potential energy loss of the polaron, at mosinetric velocity component has become large enough to ini-
amounting to 5% of the total polaron energy, broadens eftiate motion of the meanwhile further enlarged polaron. We
fectively the polaron profile. At the same time when theobserve that the ET takes place solely via the strongly
bonds receive energy at the expense of the polaron energyupled short covalent bonded unitovalent pathand the
they get distorted from their initial rest positions. More pre-interchain transfer via the weak and extended H bonds is
cisely, when amounts of the initial polaron energy are consuppressed. We tested also polaronic states on a single strand
veyed into the bond degrees of freedom a standiogd-  consisting of hydrogen bonded units as initial conditions.
breatherat the central position of the bare polaron is createdHowever, no coherent polaron motion on a hydrogen path
The nonlinear terms contained in the equations of motion otould be observed.
the bond oscillators are responsible that on receipt the ma- After the polaron motion has been activated the coupled
jority of the energy does not disperse away from the absorbdynamics continues in &uasjstationary regime character-
ing site. In reverse, due to the coupling between the interized by the uniformly traveling polaron and the standing
bond breathers. In general, we find that the pattern ofathe
polaron exhibits larger spatiotemporal oscillations than the
40 - T 3-10 polaron pointing to a heavier energy exchange between
B the polaron and the protein matrix vibrations in thaéelix.
In Fig. 15 we illustrate the evolution of the excitation pat-
terns of the covalent as well as hydrogen bonds. In fact, the
protein matrix of the 3-10 helix absorbs less amount of po-
laronic energy than its correspondirg helix counterpart.
After the polaron has passed a region the encompassed hy-
drogen bonds get stretched and pinned bond breathers are
developed whose positive maximal amplitude is the smaller
the further apart the bond breather is from the starting site.
0 ‘ ; s ‘ s w ‘ s L The covalent bonds stay permanently stretched once the po-
¢ 10 20 30 40 50 €0 /O 8 S0 100 |3ron has encountered them. The percentage of the total en-
ergy contained finally in the bond breathers is less than two.
FIG. 13. Time-evolution of the first momentum of the electronic FOr the o helix all covalent bonds and hydrogen-bonds be-
amplitude distributioric,,,|? for the 3-10 helix(solid ling) and the ~ come deformed in the course of the relatively fast dispersion
a helix (dashed ling of bond excitations into the whole lattice. These bond defor-

T —T T

partition number
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FIG. 15. The spatiotemporal evolution of the covalent respectively hydrogen b@nd$e covalent bonds of the 3-10 heli¢h) The
hydrogen bonds of the 3-10 helitc) The covalent bonds of the helix. (d) The hydrogen bonds of the helix.

mations form breather lattic¢48,49 built up from a variety = maintain energy storage and to support coherent ET. Evi-
of neighboring pinned narrow breathers. The bond breathemently, the 3-10 polaron transports its energy more efficiently
contained in the region not traversed by the polaron storéhan itsa counterparts do.
altogether less than 0.1% of the initial polaron energy while In summary, out of a nonequilibrium situation the energy
the remaining part of the breather lattice along which thesharing between the polaron and the protein matrix proceeds
polaron travels contains approximately 4% of the total ensuch that the coupled dynamics relaxes onto solutions of
ergy. coexisting electron and vibron breathésee[52] and refer-
Furthermore we recognize that the amplitudes of the coences therein Hence the breathers play the role of “attrac-
valent bond breathers are of the same order for both types odrs” [50,51 providing a stable equilibrium state. Finally,
helices. However, the H bonds of thehelix [Fig. 15d)] are ~ we remark that there is no difference between left- and right-
more susceptible to energy absorption than their rather rigid

3-10-helix counterpart§Fig. 15b)]. This gives the reason —2.25 ' ' '
for the comparatively heavy energy exchange betweemthe
polaron and its protein matrix reflected also in the temporal  _5 3¢
evolution of the polaron energy
-2.35
EpoI: 7% {a2/2|CnM|4+[C:MCn/L*1+CnMC:,U,*l] * 240
+W[C:MCH—1,U.+CHMC:—1M]} —2.45
is shown in Fig. 16. After the initial reduction the 3-10- -2.50

7 1
polaron energy fluctuates around a constant mean valui 0 10 20 50 40 50 €0 70 BO 90 100

while the a-polaron energy keeps gradually and slowly de-
creasing. Obviously, the-polaron has to “sacrifice” more FIG. 16. Temporal evolution of the polaron energy for the 3-10
of its energy to the bonds than the 3-10 polaron in order tgolaron(solid line) and thea polaron(dashed ling
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handed helices with regard to the coupled polaron protein In the regime when the polarons are of langeedium)
matrix dynamics. extension we have initiated polaron motion by kicking the
velocity component in the direction of the corresponding
pinning mode. Remarkably, the incorporation of longer-
V. SUMMARY range dispersion may improve the polaron mobility and we
In this paper we have considered the ET in the context 0pa\/_e fqund cqnstellations for which the standard polaron re-
helical protein models. The steric arrangement of the proteiff’@ns immobile whereas for the corresponding polaron of
secondary structure is modeled by a three-dimensional oscigdu@! size foW>0 motion can be activated. _
lator network. The hydrogen and covalent bond interactions 1 the second part of the paper we have considered the
between the peptide groups are modeled via pair potentialSteric dynamical problem of the polaron system interplaying
Each peptide group has an internal vibrational degree of freaVith the V|brat|on_al degrees of freedom of the protein matrix.
dom representing the amide-I mode. The motion of the elec/V€ have numerically integrated the corresponding coupled
tron over the peptide groups is described by a tight-bindindaqu?‘t'ons of motion |_n|_t|_aI|Z|r_19 the polaron subsystem with a
system. The various dynamical degrees of freedom are mtationary smalland initially immobile polaron state. Start-

tually coupled making the exchange of electronic, intramo-N9 N @ nonequilibrium initial state we have focused atten-
lecular, and intermolecular vibrational energy, respectivelyion on the relaxation dynamics in the energy exchange and

possible. the initiation of polaron motion. Generally, the polaron

With view to the formation of self-trapped states we haveMaintains a localized shape and keeps the majority of its
studied the polaron problem described by the electronic su"€rgy content. Nevertheless, some amount of the potential
system strongly coupled to the intrapeptide amide-| Vibrapolgron energy is Ioca!ly transferred into the bond wbrqtlons.
tions. We have discussed the modification of the polaroPUring an initial transient phase the energy transfer is spa-
states when longer-range dispersions arising via thdally confined to the central position of the polaron because
hydrogen-bonded units are taken into account. First, we ha/&'® nonlinearity contained in the bond equations prevents a

used a variational method to infer on the wave pattern, endiSPersion of the conveyed energy. Accordingly, we observe

ergy as well as multiplicity of polaron states, respectively.[N€ création of a pinned breather on the hydrogen bond as
Interestingly, the variational approach has resulted in bistal’éll @ on the covalent-bond lattice, respectively. In a feed-
bility in the polaron solutions, that is, for the same set of@ck manner the newly generated bond breathers react lo-
parameters there are two different polarons excitableC@lly on the momentum component of the polaron. This
namely, a small and a large one. This bistability phenomenof£ads to an increase of localized kinetic polaron energy and
is not present in the standard polaron problemA£0. In =~ 1N partlc_ular a small localized velc_)cny com_pongnt_develops
fact, this analytically predicted bistability has been verified"€5€mbling the shape of an antisymmetric pinning mode.
in the “exact” polaron solutions derived numerically as the (We underline that initially the kinetic energy content of the

attractors of a map. Generally, we have found that the great0!aron is zerg.Simultaneously, the width of the polaron is
the value of the longer-range dispersitv the larger be- enlarged due to further transmission of potential polaron en-

comes the size of the stationary polaron. Comparing the [0€9Y into the bonds. This combined effect of growing po-

calization features of the two helix types we have observed@'on extension and increased gain of polaron kinetic energy
that the 3-10 helix provides stronger degree of localizatioffS'Minates at a certain instant of time and culminates in the
than itse counterpart does. activation of polaron motion. Eventually, the coupled po-

We have further studied dynamical aspects of polaroni2ron bond vibrations dynamics has reacheduasjstation-
such as their linear stability and mobility. To investigate the2Y "egime and the polaron propagates coherently along the

stability of the polarons we have linearized the system ofattice while the bonds exhibit coexisting pinned and moving

equations of motion yielding the tangent equations. The FloPreathers. We have found that the 3-10 polaron moves

quet map has been derived and it has been shown that g“ower than itse counterpart but possesses the better ability
Floquet eigenvalues are located on the unit circle guaranted? rétain its energy content and localized shape. _
ing linear stability. In addition the Floquet analysis has pro- W€ stress the crucial role played by the protein matrix
vided us with the frequencies of the normal modes of the’Scillators as the medium “mediating” between the po-
polarons. We have discussed the impact of longer-range didaron’s potential and kinetic energy contents so that precisely

persion (V>0) on the existence and stability of localized SUCh amount of the polaron's potential energy is deposited

internal polaron modes. In the large polaron regime the low!Nto kinetic ones which is necessary to activate polaron mo-

est internal localized mode is presented by a pinning modln- Therefore the incorporation of the spatial secondary
whereas the breathing mode oscillates with higher frequencyP"Ot€in structure into the polaron problem proves to be vital
As the most striking feature we observed that at an overcriti!®’ the electron propagation mechanism illustrating the
cal valuea, the pinning mode branch jumps suddenly up ins;rong relation between structure and functional processes in
frequency leaving the breathing mode as the lowest localizeiomolecules.
internal mode. This discontinuous mode exchange is related

to the sudden transition from a large to a small polaron and

has to be distinguished from the gradual large-small-polaron The author acknowledges support by the Deutsche Fors-
transition related with the steady mode crossing in the starechungsgemeinschaft via the Heisenberg prog(ei® 3049/
dard polaron problem. 1-1).
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